
Nature Physics | Volume 21 | March 2025 | 353–361 353

nature physics

https://doi.org/10.1038/s41567-024-02757-wPerspective

Topology shapes dynamics of higher-order 
networks
 

Ana P. Millán    1, Hanlin Sun    2, Lorenzo Giambagli    3,4, Riccardo Muolo    5, 
Timoteo Carletti    6, Joaquín J. Torres    1, Filippo Radicchi    7, Jürgen Kurths8,9 & 
Ginestra Bianconi    10,11 

Higher-order networks capture the many-body interactions present in 
complex systems, shedding light on the interplay between topology 
and dynamics. The theory of higher-order topological dynamics, which 
combines higher-order interactions with discrete topology and nonlinear 
dynamics, has the potential to enhance our understanding of complex 
systems, such as the brain and the climate, and to advance the development 
of next-generation AI algorithms. This theoretical framework, which goes 
beyond traditional node-centric descriptions, encodes the dynamics of a 
network through topological signals—variables assigned not only to nodes 
but also to edges, triangles and other higher-order cells. Recent findings 
show that topological signals lead to the emergence of distinct types of 
dynamical state and collective phenomena, including topological and Dirac 
synchronization, pattern formation and triadic percolation. These results 
offer insights into how topology shapes dynamics, how dynamics learns 
topology and how topology evolves dynamically. This Perspective primarily 
aims to guide physicists, mathematicians, computer scientists and network 
scientists through the emerging field of higher-order topological dynamics, 
while also outlining future research challenges.

Understanding, modelling and predicting the emergent behaviour of 
complex systems are among the biggest challenges in current scientific 
research. Major examples include brain function, epidemic spread-
ing and climate change. Through the use of graphs and networks to 
represent interactions, network science has provided a powerful theo-
retical framework that has deeply transformed the theory of complex 
systems. Networks encode relevant information about the complex 
systems that they represent1,2, and their statistical and combinatorial 
properties strongly affect the unfolding of dynamical processes and 

critical phenomena3–6. The success of network science stems from the 
simplicity of its basic assumption: a complex system can be described in 
terms of interactions between its elements. However, this assumption 
also highlights a limitation of conventional network representations, 
as they encode only pairwise interactions.

As a matter of fact, representing a complex system with just  
pairwise interactions provides only an approximation of reality. 
Assuming the presence of many-body interactions is certainly more  
appropriate for many, if not all, systems. In high-energy physics, 
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cohomology have been shown to enhance the representation power 
of simplicial complexes, which can encode hypergraph data without 
loss of information36.

Topology is crucial not only to characterize the structure of com-
plex systems, but also to capture their higher-order dynamics. For the 
purpose of this Perspective, we are particularly interested in the emer-
gent field of topological dynamics of higher-order networks, which 
combines topology with nonlinear dynamics. Specifically, higher-order 
topology unlocks fundamental mechanisms for higher-order topo-
logical diffusion37–40, higher-order topological synchronization41–47, 
topological pattern formation48,49, triadic percolation50–52, triadic neural 
networks53,54 and topological machine learning algorithms55–59. These 
phenomena may be key to transforming our understanding of complex 
phenomena in neuroscience and climate change, and to formulating a 
new generation of physics-inspired machine learning algorithms (Fig. 1).

This Perspective focuses on the shift that the adoption of 
higher-order networks implies for the description of the interplay 
between topology and dynamics in complex systems. We outline key 
results and recent developments in the field, and the open challenges 
that future research must address. Accompanying supporting code, 
movies and material can be found in ref. 60.

Beyond the node-centric view of network 
dynamics
Dynamical systems defined on network topologies have received  
extensive scientific attention3,4, but most works implicitly assume that 

vertices of Feynman diagrams involve the creation and annihilation 
of more than two particles, with quantum chromodynamics notably 
admitting four-gluon vertices. Moreover, quantum many-body wave 
functions display strong higher-order quantum correlations and, owing 
to entanglement, cannot be fully described by two-point correlation 
functions. In inferential problems, a general multivariate distribution 
must involve higher-order interactions (as in higher-order graphical 
models, for instance). Likewise, in network science, pairwise networks 
cannot capture the many-body interactions that are present in the 
brain7–12, social networks13–16, ecosystems17 and inferential financial 
models18,19.

Allowing higher-order interactions leads to the formulation of 
higher-order networks that include interactions between two or more 
nodes20–27. Building blocks such as triangles, tetrahedra or hypercubes 
form the backbone of higher-order networks, yielding a topological 
description of complex systems that significantly alters our under-
standing of the interplay between structure and dynamics.

Topology involves the study of shapes and their invariant proper-
ties, such as Betti numbers and Euler characteristics. It plays a core 
role in topological data analysis8,28–32, an approach for analysing the 
shape of high-dimensional and noisy data, and in one of its main 
tools: persistent homology. In particular, topological data analysis 
has already been shown to be key to detecting higher-order aspects 
of brain networks7–12, offering a very powerful set of tools to charac-
terize different states of brain activity. Topology has also been instru-
mental in the development of topological filtering algorithms18,19, 
particularly for the analysis of financial data. Higher-order network 
structure can be investigated under the lens of topological33 and homo-
logical percolation34,35, the latter characterizing the emergence of 
large cycles and of higher-dimensional holes. Finally, by assigning 
weights to the higher-order interactions, weighted homology and 
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Fig. 1 | The emerging field of higher-order topological dynamics of complex 
systems. This field combines higher-order interactions, topology and nonlinear 
dynamics, giving rise to emergent phenomena encoding information that can 
dramatically transform our understanding of complex systems, such as the brain 
and the climate, and can allow the formulation of new efficient AI algorithms 
inspired by physics.

BOX 1

The topological spinor
Each topological signal defined on simplices of dimension n is an 
n-cochain Cn. If the simplicial complex is composed of N0 nodes, 
N1 edges and N2 triangles, its dynamics is encoded by a topological  
spinor Ψ ∈ C0 ⊕ C1 ⊕ C2 (ref. 89) (Fig. 2), which can be represented  

as the vector Ψ = (θθθ⊤,ϕϕϕ⊤,ξξξ⊤)
⊤
, where θθθ ∈ ℝN0, ϕϕϕ ∈ ℝN1 and  

ξξξ ∈ ℝN2 are topological signals defined on nodes, edges and 
triangles, respectively. The natural operators acting on topological 
signals are the boundary operators B[n] (ref. 78). On an unweighted 
network, B[1] represents the divergence, its transpose B⊤[1] 
represents the gradient and B⊤[2] represents the curl. The Hodge 
Laplacians L[n] (refs. 78,79) are defined through the boundary 
operators and describe diffusion from n simplices to n simplices 
through n − 1 or n + 1 simplices. Hence, the 1-Hodge Laplacian 
describes diffusion from edges to edges passing through either 
nodes or triangles. The boundary operators and the Hodge 
Laplacians are crucial to uncovering the interplay between 
structure and dynamics of higher-order networks. The key 
topological and spectral properties of L[n] are that the dimension of 
its kernel is given by the nth Betti number βn and that its harmonic 
eigenvectors can be chosen on a basis in which they are mostly 
localized along n-dimensional holes. Moreover, the Hodge 
Laplacians obey Hodge decomposition, which implies that for an 
edge signal there is a unique way to decompose topological 
signals into a sum of an irrotational (curl-free) component, a 
solenoidal (divergence-free) component and a harmonic compo-
nent. For a discussion of higher-order diffusion and random walks 
using the Hodge Laplacians and the boundary operators, see 
refs. 37,38,40,81. Note that the properties of this type of diffusion 
process are distinct from those defined on hypergraphs107,108, as 
diffusion on simplicial complexes is permitted to go at most one 
dimension up or one dimension down.

http://www.nature.com/naturephysics
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the dynamical state of a network is defined exclusively by variables 
associated with its nodes. Although this is valid in some cases, such as in 
epidemic spreading, it generally represents a limiting assumption. For 
example, dynamical variables associated with the edges of a network, 
such as fluxes, are common.

In this regard, there is growing interest in topological signals—that is, 
dynamical variables associated not only with nodes, but also with edges, 
triangles or other higher-order structures. Examples include synaptic 
signals between neurons or edge signals at the level of brain regions10,11 
and general biological transportation networks61. Other instances  
of topological signals are currents at different locations in the ocean40, 
the influence of volcanic activity on teleconnections in the climate62 
and the velocity of winds at a given altitude and geographical location.

Abstracting from these examples, the core idea is that the dynamical  
state of a simplicial complex formed by nodes, edges and triangles 
comprises topological signals defined on each dimension. These are 
encoded in the topological spinor (see Box 1 for a mathematical descrip-
tion and Fig. 2).

Whereas dynamical variables associated with edges of plaquettes 
are a widely accepted concept in other fields of physics, such as gauge 
theory63 and quantum information64, in network science and machine 
learning the description of the dynamical state of complex systems with 
a topological spinor represents a perspective that leads to new research 
questions. One prominent theme is the exploration of new algorithms 
for treating and processing topological signal data and the develop-
ment of topological neural network architectures for predicting topo-
logical signals55,58,65. Current research is also building on the powerful 
tools provided by discrete topology and discrete exterior calculus66 to 
characterize the collective behaviour of topological signals41,42,48,49,67.

Topological synchronization
Synchronization68–71 refers to the emergence of a collective and ordered 
dynamical motion of an extensive number of oscillators. Synchroniza-
tion is universal in characterizing the dynamics of complex natural and 
man-made systems, ranging from brain dynamics to power grids and 
Josephson junctions. The two most fundamental models that capture 
the synchronization transition on complex networks are the Kuramoto 
model68 and global synchronization72,73 of coupled identical oscillators. 
Both approaches are traditionally defined for node topological signals; 
that is, oscillators located on the nodes of the network and coupled via 
edges. Whereas the Kuramoto model describes both global and partial 
synchronization of heterogeneous oscillators (that is, oscillators that 
in the absence of interactions exhibit different phases), global syn-
chronization involves identical oscillators that may follow arbitrary, 
and even chaotic, dynamics.

Going beyond conventional dyadic networks, higher-order topo-
logical synchronization allows us to treat not only the synchronization 
of node topological signals, but also that of higher-order structures 
including edge topological signals—which are of particular interest for 
a variety of applications. Approaches to study higher-order topological 
synchronization include the topological Kuramoto model41,67 and topo-
logical global synchronization42, which display a rich phenomenology 
arising from the interplay of topology and dynamics.

The topological Kuramoto model (Box 2) in particular reveals a 
surprising connection with topology, showing that topology shapes 
the dynamics of higher-order networks, but also that the dynamics  
learns the underlying network topology. In fact, the topological 
Kuramoto model displays striking differences from the traditional 
node-based Kuramoto model. First, the synchronization dynamics of 
the n-dimensional topological signal is only possible if the higher-order 
network has at least one n-dimensional hole. Second, the synchronized 
state is localized on the holes of the higher-order structure. If the topo-
logical Kuramoto model is defined on a simplicial or cell complex that 
contains more than a single n-dimensional hole, the synchronization 
dynamics might be driven by a harmonic eigenvector localized on a 
single hole or by a linear combination of the harmonic eigenvectors 
localized on different holes (Fig. 3). Changing the homology of the 
simplicial complex by filling some holes, modulating their geometry 
by changing the metric matrices (weights associated with nodes, edges 
and higher-order simplices) and changing the intrinsic random fre-
quencies of oscillators can affect the nature of the synchronized state. 
Research has found that higher-dimensional holes capture important 
dynamical information in the brain7–9,12. Therefore, whether the local-
ized dynamics on the holes of a simplicial complex can be used to 
store information74, and whether control theory75 can provide key 
mechanisms for driving the dynamics towards a specific hole, or from 
one hole to another, are interesting research questions.

The higher-order topological Kuramoto dynamics (defined  
in equation (1) of Box 2) entails one linear transformation of the 
signal induced by a boundary operator and a nonlinear transforma-
tion due to the application of the sine function, concatenated by a 
second linear transformation induced by the boundary operator. 
These dynamical transformations also form the basis of simplicial 
neural architectures57,76, especially in the case of weighted bound-
ary matrices66. The interplay between topology and dynamics can be 
further enriched by considering weighted and directed versions of 
this model44,45.

The study of global topological synchronization42 has revealed 
useful insights, such as the conditions that allow topological  
oscillators sitting on higher-order simplices to globally synchronize. 
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Fig. 2 | The dynamical state of a higher-order network. Going beyond the node- 
centred view of network dynamics, the dynamics of a higher-order network is 
captured by a topological spinor Ψ, assigning a dynamical variable to each node, 
edge, triangle and higher-order simplices. The figure schematically shows the 

time series of the topological signal θ[2](t) of node [2], ϕ[14] of edge [14] and 
ξ[123](t) of triangle [123] as a function of time, t. Figure adapted with permission 
from ref. 48, APS.
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For node-based oscillators, the global synchronized state always exists. 
Its existence is ensured by the fact that the constant eigenvector is 
always a harmonic eigenvector of the graph Laplacian. As such, a basic 
question is whether the global synchronized state is dynamically stable. 
Moving to global topological synchronization of oscillators placed on 
higher-order topological signals, the existence of a globally synchro-
nized state is not in general guaranteed. Moreover, the synchronized 
dynamics will be localized on the harmonic eigenvectors of dimension 
n. As a result, if the simplicial complex does not contain a harmonic 
eigenvector constant on all n-dimensional simplices, it is not possible 
to observe global topological synchronization of order n > 0; thus only 
some simplicial and cell complexes can sustain global synchronization. 
However, some cell complexes such as the square lattice tessellation of 
the torus can sustain global synchronization for topological signals of 
any order n (Fig. 3) and an appropriate choice of the weights of the sim-
plicial complex can further facilitate the global synchronized state77.

Hodge Laplacians78,79 offer an alternative way to revisit higher- 
order diffusion on simplicial complexes, providing an extension for the 
notion of the spectral dimension38,80 and a definition of higher-order 
random walks40. This allows a separation of the diffusion of the irrota-
tional and solenoidal components of the dynamics81 and control37. 
Hodge Laplacians also provide a spectral principle for community 
detection82 related to clique communities83 and k-connectedness20.

The topological Dirac operator and higher-order 
dynamics
Although the Hodge Laplacians are suitable to treat topological signals 
of a given dimension (for example, edge signals or triangle signals), 
they fall short when describing how topological signals can crosstalk. 
Conversely, the topological Dirac operator (D, Box 3) enables the treat-
ment of topological signals of different dimensions simultaneously 
and coherently, and it has recently emerged as a versatile algebraic 
operator with wide-ranging applications in the study of complex sys-
tems. Here we provide a few illustrative examples of its use in the field 
of higher-order topological dynamics.

Originally defined in lattice gauge theory to define staggered63 and 
Dirac–Kälher fermions on lattices84, the Dirac operator has since been 
adopted in the context of non-commutative geometry85, in quantum 
graphs86 and in quantum computation87,88. It has only been understood 
very recently that the topological Dirac operator is not only relevant 
to to quantum physics, but also has important applications in the 
study of complex systems and the collective phenomena that involve 
topological signals of different dimensions89.

The topological Dirac operator is rooted in theoretical physics89–92 
and can be used to formulate a topological Dirac equation89 in which 
the eigenstates have a topological interpretation and are defined on 
nodes, as well as links and higher-order simplices. For this equation, 
the matter–antimatter symmetry is broken for states of particles and 
antiparticles of energy E = m (Fig. 4). Moreover, the topological Dirac 
operator can be used to define the mass90 of simple and higher-order 
networks and is at the basis of an information theory coupling matter 
with geometry92. The topological Dirac operator can be coupled to 
metric matrices leading to symmetric and asymmetric weighted Dirac 
operators36. Moreover, as for the continuous Dirac operator, the topo-
logical Dirac operator can be coupled to gamma matrices, allowing it 
to act on generalized topological spinors comprising (for instance) 
two-dimensional (2D) node signals and 2D edge signals—or even a 2D 
node signal and 1D edge signals49,89.

The topological Dirac operator naturally defines Dirac 
synchronization43,46,93, a Kuramoto-like synchronization model and 
global topological Dirac synchronization47 locally coupling node and 
edge topological signals. It is worth noting that in Dirac synchroni-
zation the Dirac coupling induces a discontinuous synchronization 
transition on fully connected networks, as well as random networks. 
One peculiar property of Dirac synchronization is that the order param-
eter of the dynamics includes linear combinations of node and edge 
signals. Moreover, Dirac synchronization leads to the emergence of 
spontaneous rhythms; that is, fluctuations of the order parameter. 
This is a promising tool for the study of biological rhythms in the brain 
and rhythmic behaviour in the climate system—such as the see-saw 
relationship of the East Asian–Australian summer monsoon94.

The topological Dirac operator is also key to defining topological 
patterns that extend the notion of Turing patterns in the continuum95 
or on networks96,97 to topological signals defined on nodes, edges 
and squares of cell complexes48,49. Interestingly, patterns formed by 
one-node and one-edge signals can only be static. However, by using the 
three-way Dirac operator acting on 2D-node and 1D-edge topological 
signals (or, as a matter of fact, 1D-node and 2D-edge topological sig-
nals), Dirac patterns with very distinct dynamical signatures emerge49.

The spectral properties of the topological Dirac operator encode 
topological features of the simplicial complexes, and its weighted 

BOX 2

The higher-order topological 
Kuramoto model
The higher-order topological Kuramoto model41 captures the 
topological synchronization of the n-dimensional topological signal 
ϕ of elements ϕα, describing non-identical oscillators placed on 
n-dimensional simplices. In this model ϕ follows the dynamical 
equation:

dϕϕϕ
dt

= ω − σB⊤[n] sin (B[n]ϕϕϕ) − σB[n+1] sin (B
⊤
[n+1]ϕϕϕ) , (1)

where the sine function is taken element-wise, B[n] are the boundary 
matrices, σ is the coupling constant and ω is the vector of intrinsic 
frequencies drawn from a random unimodal distribution, typically a 
Gaussian or Lorentzian distribution. The topological Kuramoto 
model reduces for n = 0 to the standard node-based Kuramoto 
model68. It leads to a continuous synchronization transition for any 
n ≥ 0, while the adaptive modulation of its coupling constants with 
the global order parameters gives rise to explosive discontinuous 
transitions41,67. The topological Kuramoto model is a gradient flow of 
the Hamiltonian ℋ:

ℋ = −ω⊤ϕϕϕ − σ1⊤Nn−1
cos (B[n]ϕϕϕ) − σ1⊤Nn+1

cos (B⊤[n+1]ϕϕϕ) , (2)

where 1Nn is the Nn column vector whose elements are all ones. 
Neglecting for the moment the term that depends on the random 
intrinsic frequencies, this Hamiltonian has a degenerate fundamen-
tal state with the degeneracy equal to βn that includes all the 
eigenvectors in the kernel of L[n]. The topological Kuramoto dynam-
ics can be associated with global topological complex order 
parameters41 given by X± = ∑αeiϕ

±
α /Nn±1, where ϕϕϕ+ = B⊤[n+1]ϕϕϕ  

and ϕϕϕ− = B[n]ϕϕϕ. These order parameters indicate when the  
non-harmonic modes freeze. In Fig. 3 we indicate instead some 
local complex order parameters associated with the two octagons  
of the figure and given by Xo = ∑α∈𝒪𝒪e

i(−1) f(α)ϕα /No, where the sum  
is extended to all the edges α incident to the octagon 𝒪𝒪, formed 
by No = 8 edges, and where f(α) = 0 (f(α) = 1) if α is oriented clockwise 
(anticlockwise). As is apparent from Fig. 3, the order parameters Xo 
can help us distinguish between filled and unfilled cycles by 
considering only the topological dynamics of the edge signals, 
thus dynamics learns topology.

http://www.nature.com/naturephysics
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version reveals the geometric degree of freedom of the simplicial com-
plex. Moreover, it can be defined for single and multiplex networks98. 
The strong interplay between the structure of the simplicial complex 
and the spectral properties of the topological Dirac operator is at the 
core of its growing popularity in persistent homology87,88,99,100. Owing to 
its ability to treat coupled topological signals of different dimensions, 

the topological Dirac operator is also used for signal processing 
on simplicial complexes and hypergraphs56,101 and for formulating  
Gaussian kernels102 and simplicial neural networks103,104.

The topological Dirac operator, which in its continuum version 
has played such a central role in different areas of physics, is therefore 
now emerging as a fundamental algebraic topology tool for the study of 
complex systems. Despite being in its infancy, we believe that research 
in this field has great potential for discoveries in complex systems, 
as well as for progress in machine learning algorithms rooted in (and 
inspired by) physics.

Topology is dynamical
So far, we have only discussed models in which the topology of the 
simplicial complexes is independent of time. However, many com-
plex systems exhibit situations where topology changes in time, as is 
typically observed in brain resting activity and climate systems. Basic 
motifs of such time-evolving networks are triadic interactions, occur-
ring when nodes regulate the interactions among other pairs of nodes. 
Triadic interactions can be signed; that is, the regulator node can either 
enhance or inhibit the interactions between other two nodes. A network 
with triadic interactions is at the same time a higher-order network 
and a network of networks. Indeed, triadic interactions include more 
than two nodes and can be combined such that a single interaction is 
regulated by more than one node. Typical examples are neuron–glia 
interactions in the brain, transcription networks and ecological inter-
actions17. Although triadic interactions are a well-established concept 
in each of these scientific domains, it has only recently become clear 
that their role in modulating interactions leads to new dynamical pro-
cesses, including triadic percolation50–52, the triadic Hopfield model53, 
more general neuron–astrocyte models of associative memory54 and 
information propagation in non-equilibrium signalling networks105.

Triadic interactions can be used to regulate on or off structural 
edges, leading to triadic percolation50,52—a fully-fledged dynamical 
process in which the giant component changes through time. Specifi-
cally, triadic percolation implements a two-step algorithm: (1) nodes 
are active when they belong to the giant component of the structural  
network formed by nodes and active structural edges, and (2) active 
nodes regulate the structural edges through their associated triadic 
interactions. The resulting percolation process has an order para-
meter (given by the fraction of nodes in the giant component) that 

Time

Time

b

Time
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a

Fig. 3 | The topological Kuramoto model and global synchronization.  
The synchronization of the topological signals is driven by the presence of 
n-dimensional holes in the higher-order network. a, In the topological Kuramoto 
model41, empty and full cells (the case of edge synchronization for a cell complex 
with one empty cell or hole is shown) display different types of dynamical states 
localized on the two cycles of the higher-order network, as is evident from the 
dynamics of the local complex order parameters. X (1)

o  and X (2)
o  defined in Box 2. 

In the limit in which there are no n-dimensional holes, the dynamics of the 

n-order topological Kuramoto model freezes. b, While the higher-order 
topological Kuramoto model can also achieve synchronization if the holes of  
the cell complex are localized, global synchronization requires the existence  
of a harmonic eigenvector constant on each cell of the cell complex, which is 
achieved if there is a single delocalized hole, such as for the square lattice 
tessellation of the torus show here, displaying a global complex order  
parameter X = ∑αe

iϕα /Nn oscillating in phase while keeping its absolute  
value ∣X∣ = 1.

BOX 3

The topological Dirac operator
On an unweighted simplicial complex of dimension 2, the topo-
logical Dirac operator89 D: C0 ⊕ C1 ⊕ C2 → C0 ⊕ C1 ⊕ C2 is given by

D =
⎛
⎜
⎜
⎜
⎝

0 B[1] 0

B⊤[1] 0 B[2]

0 B⊤[2] 0

⎞
⎟
⎟
⎟
⎠

with D2 = ℒ =
⎛
⎜⎜⎜
⎝

L[0] 0 0

0 L[1] 0

0 0 L[2]

⎞
⎟⎟⎟
⎠

. (3)

Hence, the D can be interpreted as the ‘square root’ of the Laplacian 
and admits both positive and negative eigenvectors related by 
chirality. Note, however, that the harmonic eigenvectors break the 
chiral symmetry. On a 2D simplicial complex, D maps ΨΨΨ into the 
topological spinor ΦΦΦ given by:

ΦΦΦ = DΨΨΨ =
⎛
⎜
⎜
⎜
⎝

B[1]ϕϕϕ

B⊤[1]θθθ + B[2]ξξξ

B⊤[2]ϕϕϕ

⎞
⎟
⎟
⎟
⎠

, (4)

by projecting topological signals one dimension up or down, thus  
allowing them to crosstalk. D can be adopted to define a topological 
Dirac equation89 given by:

i∂tΨΨΨ = (D + γ0m)ΨΨΨ, (5)

where, for a 2D simplicial or cell complex, γ0 is the 𝒩𝒩 𝒩𝒩𝒩  block 
diagonal matrix with diagonal blocks (IN0 , −IN1 , IN2 ) (Fig. 4).
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is time-varying and can be proved to undergo a route to chaos in the 
universality class of the logistic map. Therefore, the phase diagram, 
instead of describing the standard second-order percolation transi-
tion, is represented by an orbit diagram. This reveals that the perco-
lating phase is characterized by non-stationary dynamics of the order 
para meter (Fig. 5). Thus the network can display a blinking behav-
iour (that is, periodic activation of different sets of nodes) or, in the 
infinite network limit, a chaotic dynamics of the order parameter. In 
spatial networks defined on a 2D torus, triadic percolation51 gives rise 
to complex spatiotemporal patterns and to a giant component whose 
topology changes through time and displays (for some parameter 
values) intermittency between patterns of different topologies. These 
results provide new scenarios for understanding the spatiotemporal  
modulation of the giant component in neuroscience and climate  
science, for example.

Outlook
Higher-order networks are starting to reveal how network topology, 
which is key in traditional physics fields such as high-energy physics 
and condensed and soft matter, is also crucial to capture higher-order 

network dynamics. This emerging theoretical framework discloses 
innovative findings in various disciplines ranging from physics, 
computer science, Earth science and neuroscience to finance. In this  
Perspective we have covered fundamental aspects of this nascent  
field of research, and the first interdisciplinary applications, by out-
lining the key challenges that emerge from the results obtained so far.

The growing field of higher-order topological dynamics offers 
interesting prospects for the development of a more comprehensive 
theory of complexity by combining higher-order networks with topol-
ogy and nonlinear processes, and by interpreting these interactions 
under the lens of information theory.
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