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Abstract

The Wilson-Cowan model for metapopulation, a Neural Mass Network Model,
treats different subcortical regions of the brain as connected nodes, with connec-
tions representing various types of structural, functional, or effective neuronal
connectivity between these regions. Each region comprises interacting populations
of excitatory and inhibitory cells, consistent with the standard Wilson-Cowan
model. In this paper, we show how to incorporate stable attractors into such a
metapopulation model’s dynamics. By doing so, we transform the Neural Mass
Network Model into a biologically inspired learning algorithm capable of solv-
ing different classification tasks. We test it on MNIST and Fashion MNIST in
combination with convolutional neural networks, as well as on CIFAR-10 and
TF-FLOWERS, and in combination with a transformer architecture (BERT) on
IMDB, consistently achieving high classification accuracy.
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1. Introduction

Understanding brain information processing requires building computational
models that are capable of performing cognitive tasks [50]. A brain computational
model is a mathematical model that mimics the brain information processing
underlying the performance of some task at some level of abstraction. At microscale,
biological processes that underlie brain computation are described by biophysical
models [70, [75], while, at macroscale, processes occurring in the brain are modeled
by brain-dynamical and causal-interaction models [43, [89]. In the past decades,
the field of computational neuroscience has developed many mathematical models
of elementary computational components [64], 81] and their implementation with
biological neurons [I]. In this paper, we discuss one of them: the Wilson-Cowan
model [94].

The Wilson-Cowan model describes the evolution of excitatory and inhibitory
activity in a synaptically coupled neuronal network. As opposed to being a detailed
biophysical model, it is a coarse-grained description of the overall activity of a
large-scale neuronal network, employing just two differential equations [45]. As
such, they embraced nonlinear dynamics, but in an interpretable form, i.e., they
were motivated by physiological evidence [69], which suggested the existence of
certain populations of neurons with similar responses to external stimuli [42].
Indeed, it was the first mathematical formulation to emphasize the significance
of interactions between excitatory (E) and inhibitory (I) neural populations in
cortical tissue [30], thereby incorporating both cooperation and competition [96].

This model has been widely used to study various aspects of neural activity: as a
single-node description of excitatory-inhibitory population dynamics, as a building
block for larger-scale brain network modeling studies, and as the underpinning
of spatially extended models of neural dynamics at the tissue scale. It takes

into account essential parameters such as the strength of synaptic connections



among each type of neuronal population and the intensity of input received by
each population. By manipulating these parameters, the model can replicate a
range of dynamic brain behaviors, including multistability [44] and limit cycles [94].
Other applications are: stable inhomogeneous steady states that store information
dynamically and suggest a basis for short-term memory [15], oscillations [63],
traveling waves [37], and the formation of spatial patterns [95]. Additionally,
the model captures information processing [16], binocular rivalry [93], cognitive
dynamics of movement [29], phase-amplitude coupling [28], neuroimaging data
[35], cortical resonant frequencies [19], epilepsy [95, [65], and decision [9], among
other complex brain activities [72, [48]. Lastly, Wilson—Cowan models are a key
component of the Virtual Brain project that aims to deliver the first simulation of
the human brain based on personalized large-scale connectivity [83].

Building upon these foundational methods, the Wilson—-Cowan model has
been extended providing a deeper insight into the emergent collective behaviors of
networks across multiple scales of organization [71]. Most obviously, it is possible to
generalize to multiple excitatory and inhibitory populations reflective of particular
cortical areas and functions. For examples, [18] studied the dynamics of a network
of Wilson-Cowan model (a system of connected Wilson-Cowan oscillators). By
observing that information transfer within each cortical area is not instantaneous,
they consider a system of delay differential equations with two different kinds of
discrete delay for exploring a variety of larger networks, in order to determine how
the network topology will influence time delayed Wilson—-Cowan dynamics. They
find that network structure can regularize or deregularize the dynamics. In [82],
the authors, instead, use personalized Alzheimer’s disease computational models
built on whole-brain Wilson-Cowan oscillators to evaluate the direct impact of
toxic protein deposition on neuronal activity.

Although the applications of the Wilson-Cowan model seem to cover many



areas, a fundamental gap, as far as we know, remains: these extensions have not
yet been applied to perform cognitive tasks, such as learning patterns in image
recognition or general classification tasks.

To fill this gap, in this paper, we consider a network metapopulation form of the
Wilson-Cowan model (a Neural Mass Network Model [14]). Biologically speaking,
such a network treats different subcortical regions of the brain as connected nodes,
and the connections represent various types of links between them, as structural,
functional, or effective connectivity between these distinct subcortical regions [26].
Within each region, or node of the network, there are interacting subpopulations
of excitatory and inhibitory cells [6], in accord with the standard Wilson-Cowan
model (a cartoon is displayed in Fig. . Moreover, noting that since long-range
connections in the brain mainly project from excitatory pyramidal cells 7], B3], we
restrict couplings between brain regions to connections between only excitatory
subpopulations.

Given such a network, we aim to explore the learning capabilities and general-
ization abilities on classification tasks. To do so, we present, as in [58], a method
for planting stable attractors into the dynamics of this Neural Mass Network Model
(as described in Sec. , , and illustrated in Fig. 4). The presented method
incorporates stable attractors into the model’s dynamics, identifiable as targets for
the classification task. These attractors are pairs of eigenvectors and eigenvalues of
the adjacency matrix of the graph, selected a priori to meet the task requirements.
Each eigenvector, used as long-term memory, consists of stable fixed points of
the dynamics of each node. When the model reaches an attractor, the dynamics
stabilizes, positioning on one of the targets of the classification task.

Using machine learning techniques to learn the others eigenvectors and eigenval-
ues of the matrix, we validate the classification performance of such a model (and

combinations with Convolutional Neural Networks (CNNs)) on MNIST dataset
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Figure 1: Cartoon of the Neural Mass Network Model. This figure illustrates
a cartoon of the Neural Mass Network Model. a) Nodes represent distinct brain
regions. b) Within each region, or node of the network, there are interacting
subpopulations of excitatory and inhibitory cells, in accord with the standard

Wilson-Cowan model. ¢) Standard Wilson-Cowan model.

[23] (grey scale handwritten images of size 28 x 28), Fashion-MNIST dataset [97]
(grey scale Zalando’s article images of size 28 x 28), CIFAR-10 dataset [51] (colored
images of size 32 x 32 x 3) and TF-FLOWERS dataset [91] (colored images of size
224 x 224 x 3). Moreover, we tested our model in combination with a transformer
architecture for classifying text reviews from the IMDB dataset [73].

The remaining sections of this paper are organized as follows. Section [2] details
our Wilson-Cowan model for metapopulation, showing also the possible biological
connections of the computational model. Section [3| presents our methodology for
enforcing stable attractors into the model. The methodology describing how to
train our model for being a learning algorithm is in Section[d], while the experimental
numerical validations on well-known datasets are presented in Section [l Finally, in

Section [6] we conclude the paper discussing and summarizing the obtained results.



2. The model

According to graph theory, brain networks can be described as graphs composed
of nodes (vertices) representing neural elements (brain regions) linked by edges
representing physical connections (synapses or axonal projections).

The topological and physical distances between elements in brain networks
are intricate. Neurons and brain regions, containing populations of neurons,
have a higher probability of being connected if they are spatially close, whereas
connections between spatially remote neurons or brain regions are less likely
[11]. This is because longer axonal projections are more expensive in terms of
material and energy costs; indeed, the spatial layout of neurons or brain regions is
economically arranged to minimize axonal volume [12].

Given these biological observations, we propose that there are many interacting
populations, forming a network metapopulation version of the Wilson-Cowan
model. More precisely, we are given a graph G(N, &), where each of the N
vertexes contains a population of neurons, composed by excitatory and inhibitory
subpopulations, and interacts with another set of subpopulations contained into
another vertex of the graph through a link in the set of £. Each node in this
model, therefore, corresponds to a population of neurons, including excitatory and
inhibitory subpopulations, and hence we have a metapopulation model for some
regions of the brain. Such populations can be finite or infinite. In this manuscript,
we assume they are infinite. We will analyze the effect of finite size corrections at
the single population level in future works.

The interactions between vertices are described, according to graph theory
terminology, by an adjacency matrix A of the graph underlying the network. In
general A € RV*N_ In this manuscript, an element of a matrix A is defined as
[A]},. The matrix A, in our case, can be factorized by definition, i.e., A = ®PAP~H

R./\/’x./\/’

where A is a diagonal matrix A € , composed by the eigenvalues of A, and



® € RV*V is a matrix where each column, i.e., (En = [®]., withn=1,...,N,is
an eigenvector of A. With the symbol (-)~! we define the inverse matrix operation.
The choice of dealing with the above decomposition of the coupling matrix echoes
the spectral approach to Deep Learning discussed in [I7] and reference therein.

As stated before, each i-th vertex in G(N, €) has its own pair of Wilson-Cowan
equations, describing the dynamics of a population of neurons, composed by
subpopulations of excitatory and inhibitory species. Each subpopulation can be
described by a proportion of excitatory and inhibitory neurons firing per unit time
at time tE|. This proportion, in literature, is formalized with letter = for excitatory
neurons and letter y for inhibitory neurons, respectively. Mathematically, the
whole set of exitatory and inhibitory subpopulations can be described by the
vectors Z € RV and ¢ € RV. In this manuscript, we refer to the i-th component
of a vector ¢ with [9];.

For a sake of simplicity, we collect the two species of neurons into a matrix
z € RV*2. Mathematically, we obtain that [z]., = 7, [z].2 = ¥, [2];. = ([£];, [1]:)-

In vector notation we have: 2z} = [z].1, 25 = [z].» and (: = ([z]:.)7, where
71,7y, € RV, while Q_”; € R? and 7 signifies the transpose operation.
Thus, the Wilson-Cowan equations of the model that govern the dynamics in

each node of the network read:

d[z(lj];(t) = —ap[Z)i(t) + (1 = [BJ:O))[fe(sB(Z (1), Z(1))]; (1a)
d[z(zi]tz‘(t) _ % <—Oz1[52]i(t) + (1= [BLO)f1(s1(2 1), ZZ@)))L) (1b)

where ¢ = 1,...,N. Here, 0 < [Z1];(¢),[%):(t) < 1,i =1,...,N, with 0
corresponding to a state of quiescence in neuronal activity.

The system also captures the refractory dynamics of both subpopulations,

In this manuscript, all the variables are dimensionless.
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defined by the pre-factors 1—[21];(t) and 1-[2];(t), tracking the period of time
during which cells are incapable of stimulation following an activation E| a1 are
constant rate functions.

The functions ﬁg() and ﬁ() represent nonlinear activation functions (non linear
firing rate) for excitatory and inhibitory neurons, respectively, acting component-
wise, i.e., [fr.r)i = S)I + fg)l tanh(Bg 1[Sk.1];) where g is the gain parameter.
The quantities f](;)[ and f](;)[ enter the definition of the sigmoidal non linear function
and allow for a swift control of the location of fixed points. The offset f,‘;), sets
in particular the degree of residual activity when [5g ;]; = 0. These nonlinearities
capture the threshold-like behavior of neurons, i.e., a neuron only fires if its input
exceeds a certain threshold. Obviously, they are functions of the currents g ;.

We define v as the ratio between inhibitors and activators in the population of
neurons on a single vertex of the graph. This ratio is conventionally set to 0.25.
This is due to the fact that it is known that in the brain, there are billions of
neurons in the cortex. Among them, scientists have shown that 80% are excitatory,
whereas the remaining 20% are inhibitory [62], depending on whether they have a
prominent postsynaptic density or a very thin postsynaptic density, respectively
[21].

We perform an important modification in the current vectors sg(Z(t), Z2(t))
and s7(Z1(t), Z2(t)) with respect to the standard Wilson-Cowan model. Indeed, in
these functions, we introduce the coupling term between the regions of the brain.

More precisely, the equations for the currents are:

2This term has often been neglected in subsequent considerations of the model, and [78]

showed that it effectively rescales the parameters of the nonlinearities.



SHZ1(1), (1) = wppZi () — w5 (t) + hpé + TAZ(t) (2a)

S_}(gl (t), 52(t)) = (.U[Egl (t) — ijgg(t) + h[g (Qb)

where € € RV is a vector where all components are set to 1, I' =1/ VN is a
scaling factor [61l, 40], wgg, wrr, wer, and wrg denote the strength of connectivity
within and between the excitatory and inhibitory subpopulations. hg and h; denote
the strength of the external input to each of these subpopulations. The I"AZ;(t)
term couples the nodes of the network, and gives the strength of the interactions
between connected nodes [76, [57]. We recall that AZ)(t) is a multiplication between

RNM*N and a vector in RV. It is worth pointing out that inter-node

a matrix in
connections are established between excitatory subpopulations only, as is true of
the brain. Such a term has been introduced in many works, as [2, [77], for analyzing
different dynamics in Wilson-Cowan oscillator networks, including approaches that
use a Laplacian instead of an adjacency matrix. In all these cases, the authors
analyze only the dynamical behaviors, without embedding stable attractors or
applying the resultant dynamics to a learning task. As far as we know, our work
is the first in this direction of research.

The system’s evolution can lead to unique fixed points, multiple fixed points each
with its own basin of attraction, or even result in an oscillating periodic attractor,
depending on the choice of parameters in equations and . Throughout this
paper, our primary focus will be on parameter configurations leading to bistability
[4] (Fig. [2| displays a cartoon of the bistable profile for the standard Wilson-Cowan
model). We select the bistabile profile to construct a dictionary for our classification
task. Specifically, we aim to utilize the fixed points of the oscillator as targets for
the dynamics to converge to. We, therefore, select parameters in equation and
to ensure the emergence of precisely two fixed points at every node of the graph

(in the case the coupling term is omitted, i.e., when I' = 0), as used in [99]. We
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Figure 2: Cartoon of the bistable profile. This figure illustrates a cartoon of
the bistable profile of the standard Wilson-Cowan model we adopt in each node of

the network.
denote these solutions as E(l) =@, 7" and 2(2) = @™, 7™)7 for each node.
Our objective is to classify K items based on the output of the network G(N, £).
The network which defines the backbone of the examined dynamical model is
made of N nodes, N denoting, for example, the number of pixels of the images
to be classified. Each node is assigned with a standard Wilson-Cowan model.
Nodes are then sensing its nearest neighbours, as stipulated by a linear coupling
term which selectively acts on the excitatory species. The web of inter-nodes
connections is stored in the A' x A adjacency weighted matrix (A = ®AP~),
whose elements represent the weights to be optimized in the training process. The
above matrix is formulated in spectral domain [58]: a subset of K suitably tailored
eigenvectors is assigned to its kernel and define the attractive poles for the globally
coupled dynamics. The eigenvalues populate a specific region of the real axis that
yields stability of the crafted attractors, as dictated by the linear stability analysis
presented in the next section. In essence the model to be trained is an extended
collection of interacting units subject to contrasting tendencies: local reactions

occur between subpopulations referred to a single brain region (or node), while
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global, spatially (across nodes) extended, interactions make the system to evolve
towards complex heterogeneous stable states. In summary, the item to be classified
is supplied as an initial condition of the dynamical model and the ensuing stable
attractor, as reached by the trained model, flags for the corresponding classification
label. Under this perspective, learning amounts to shaping the basin of attraction
of the underlying dynamical model.

Having in mind that, we encode K attractors within the matrix ®, representing
distinct system configurations that it may evolve towards over time. We specify
K columns of ¢, thus ggk for k=1,..., K. By design, these column vectors are
chosen permutations of the fixed points identified in the dynamics described by
equation (1]}, such that each element of ¢y, corresponds to either [f(l)]l or [2(2)]1,
namely [¢p]; = {[E(l)]l or [2(2)]1} Vi =1,...,N (see Fig. , Panel b) and c)).
Furthermore, we align only the eigenvectors gz?k, k=1,...,K, within the kernel of
A highlighting that these vectors, as elements of the kernel, can be constructed
from linear combinations of the kernel’s orthonormal vectors.

In conclusion, Agz?k = /\kggk = 0. Thus, each eigenvalue )\, associated to
a gk (k=1,...,K) in A is set to zero. To streamline our appr(()a)bch Witlzo)ut

(1 (2

sacrificing generality, we choose the system parameters so that [ ]o = [( s
=(1)

Although [¢ ], represents a degree of freedom within the system dynamics, it

lacks informational value for our classification task. Consequently, we refrain from
~(2)

adding an eigenvector composed exclusively of [( |2 values to A.
The embedded eigenvectors must be stable. To ensure this, we perform a linear
stability analysis [88] to identify the conditions that the non-zero eigenvalues in A

must satisfy in order to make g;k (k=1,...,K) stable attractors.
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3. Enforcing Linear Stability

Our aim is to enforce stability on the K planted attractors in A. To be stable
a stationary state must be such that under a small perturbation, the dynamics
of the system returns on it. For this reason, we consider the system of real first
order differential equations dz/dt = G(z), where G : RV*2 — RN*2 identifies the
functional components in equation (), thus the i-th row of G(z) is, in matrix
notation dé/dt = ([G(2)]:..)7, equal to equation . At the steady state d@/dt =0,
foralli =1,...,N. Hence, G(z*) = 0.

For analyzing the stability of fixed points in the stationary state, i.e., z*, we
examine the behaviour of orbits near it.

Thus, we assume that z(t) = z* + 0z(t), where 0z(t) is a small perturbation
close to z*. Substituting into dz/dt = G(z), we can expand G(z) to first order in
0z(t), obtaining:

G(z* +6z(t)) = G(z*) + J(z%) - 0z(t) + O(6z*(1)). (3)

The tensor J(z*), which denotes the Jacobian, can be easily computed. Indeed,

by definition of Jacobian:

[ dG(2)]]. dG(=)]]. dlG(2)]] . ]
¢y dCs T dCx
dlG(2)];.  dG(2)]3, d[G(2)]3,
J(z) = d?l d§2 . . d(TN ‘ (4)
dlG(@)]}. dG(2)]) . dG(2)]} .,
| 4 dés T div

Making the whole calculation together, we obtain the following equation for
the time dependence of the perturbation of z from the steady state:

doz(t)

e J(z*) - 8z + O(62%). (5)

The linearized stability problem is obtained by neglecting terms of second order in

07z.
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The Jacobian is in RW>*2*NVx2) - From , we can make it diagonal. In such a
situation, we can compute only a single component of the diagonal for computing
the whole Jacobian. Mathematically, each component of the diagonalized Jacobian
is a matrix 2 x 2 of components:

Talz) = |Enen fanc | (©)
Tenen  Jenicn

where [[J];;(2z)]e, with e,1 = 1,2, defines the derivatives with respect to species
e on the expression of the species [ on the dynamics of our model on vertex i.

To solve () (neglecting O(0z2)), we solve do(;(t)/dt = [J]::(z*) - 6(; on a single
vertex ¢ of the network. We recall that the last equation has been obtained by ob-
serving that 55; = [0z];.. Thus, by seeking a solution of the form 5@(75) = X exp(st)
with ; € R?, the problem becomes a simple eigenvalue problem: [J];;(z*)X; = sX;
which has nontrivial solutions for values of s satisfying the second order polynomial
equation D(s) = det([J];;(z*) — sI) = 0, where I denotes a 2 x 2 identity matrix.

To look for asymptotic stability, it suffices to consider two roots of D(s) = 0,

ie. st and s(7). At each root is associated an eigenvector )Z(i). Any time

evolution can be represented as 5(:(15) = c+>ZZ(»+) exp(s™t) + c_)ZZ(_) exp(s(t),
where cy are constant coefficients that can be determined by the initial condition
5G(0) = e X + ext )
Given that the coefficients of the characteristic polynomial D(s) are real, we
expect that the eigenvalues s™*) to be real or appear in complex conjugate pairs.
By definition of stability, the real part of the eigenvalues s*) must be negative.

This implies that when solved the following expression:

@ _ Tr()a(z9) £ v/ Tr([ii(z))” = ddet([Tu(z)) (7)
: ,

the maximum value between the two real part of (7)), i.e., max{Re(s(*)), Re(s(7))},

S
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must be taken. If such a value is negative, then the associated fixed point is asymp-
totically stable [8§].

To be explicit, the elements of [J];;(Z*) have the following expressions:

Jenien = —ar = [fe(si([2" ], [27].2))) + (1 = [é]l)[f;(s_é([z*]:,la 2*].2))li(weE + T'A)
(8a)

Jenin = (1= G0 Falsp(2. 1, (2] 2))i(—wer) (8D)

Tees = (L= GG el (80

Tenien = % (—ar = i(si ("), [20:2)li + (1= (GRS (572, (2] ) i(—r) )
(84)

where fg/] are the derivatives with respect to the species E/I. ); is the
eigenvalue of the matrix A, associated to the i—th vertex. The eigenvalue problem,
the one associated to the stability problem, now contains the parameter \;, and
equation becomes parametric. In such a situation, we can compute the entire
region of stability, and know exactly what kind of values the parameter \; must
take so that the stationary points are stable. In Fig. [3] we show the maximum

+)

value of the real part of the eigenvalues s as a function of \;, on a single vertex

7. In this case, the plot shows that the stationary points are stable as soon as

+)

the maximum value of the real part of the eigenvalues s&) is negative. Through

this method, we have identified the regions of \; that ensure the stability of our
stationary state, thereby securing our planted attractors.

4. Training

Obtained the stability criteria for our attractors, we can construct a statistical

learning model for our classification task. In such a statistical learning model only
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Figure 3: Stability before training. The figure shows the maximum value of the
real part of the eigenvalues s*) as a function of the parameter ;. The two curves,
with different colors, identify respectively the two different steady states. The
parameters here employed read wy; = 1, wyp = 0.0, wgr = 2, wgg = 7.2 ag = 1.5,
a; =04, hy=—12,h; =0.1,7 =025, 8 = 3.7, f) =0.25, ) =0.65, 8; =1,
fY =05, fP =05 N =784
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the components of the matrix ®, which are not the embedded eigenvectors, the
non-zero eigenvalues in A, and the ~ parameter can be learned. In other words, the
matrix ® should be regarded as a matrix where the first K columns, identifying
the embedded attractors of the system’s dynamics, are not to be learned, just as
the first K eigenvalues of the matrix A, which are fixed to be zero by construction.
This approach ensures that the planted attractors guide the dynamics, letting the
system to converge on selected attractors once the training has been completed.
As an initial condition for the non-embedded eigenvectors, we opt for orthogonal
random eigenvectors [5]. As an initial condition for v we opt for a value equal
to 0.25 (as described in Section , while for the trainable eigenvalues we opt to
initialize them with a normal distribution with mean equal to —v/N and variance
equal to 1. The condition on the trainable eigenvalues satisfies completely the
initial stability condition (see Fig. . Without loss of generality, we fix the non
trainable parameters of the model, as described in the caption of Fig. [3| and used
in [99].

Moving onto the model training, the parameter space for optimization resides
in RV-E)YNV+D+L - where K, we recall, denotes the number of classes in our
classification problem, and the singular dimension relates to the parameter ~.

In practice, we are in a supervised learning setting. Therefore, we have a
dataset D = (z, T)DEL-IP of size |D|, where z) is an input datum, and 7
represents the associated target. For simplicity, the input datum is understood
to be zU) € RV*2. K distinct and mutually different targets are mapped as
attractors of the dynamics. In other words, the target associated to the first class
of items is the first eigenvector qgl of matrix A, the target associated to the second
class of items is the second eigenvector 52, and so on. We recall that the first K
eigenvectors of A have been planted with a particular structure, as described in

Section 21

16



For example, the MNIST dataset is composed of a set of 70000 handwritten
digit images of size 28 x 28, ranging from 0 to 9, with associated labels for each
digit. A label is just a number from 0 to 9, thus indicating the number of classes
for the classification task is K = 10. By denoting the j-th image of such dataset as
79 € R™ and its associated label with 77 the j-th input element (our initial
condition) of our dataset D will be built as z0) = () = #), #) = 7)), with
the associated target given by TG = qz?T,m. Therefore, the j-th element of our
dataset will be (z,7)¥), where z € RV*2 T € RV, and N/ = 784. The cardinality
of D will be |D| = 70000. This dataset is then split into a training and a test set
of size |Dyrain| = 60000 and |Dyes| = 10000, respectively. Each node of the graph
is associated with a pixel of an image that must be classified. The image evolves
over time and reaches an asymptotically stable state corresponding to the one we
initially planted. A figurative example of how the dataset is constructed and how
stable attractors are planted is presented in Fig. [

By construction, the data are sampled i.i.d. from their unknown joint distribu-
tion P(z, 7).

The objective of the training is to estimate the values of the model’s weights
in such a way that it is able to achieve its goal. This estimations is reached by the

minimization of a loss function. We define the loss function as:
1 A L , »
£ =15 2 E@) = TN END) = TO), (9)
j=1

where T is a sufficiently large time, ensuring that a stationary state of the dynamical
system is reached. The reader should note that in @, only the excitatory species
is explicitly written. However, the inhibitory species is implicitly factored into the
loss function through its contribution to the excitatory term, i.e., equation ().
The input datum z) represents, for our dynamical system defined in (I)), an
initial condition of the dynamics, i.e., z(j)(t = 0). From such initial condition,

we evolve the dynamical system for a sufficiently large time 7'. The evolution is
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Figure 4: Building the model. The figure illustrates the composition of the
dataset and the method for introducing stable attractors into the dynamics. Panel
a) displays the labels, images, and targets used in our model. The first row shows
the labels of the MNIST image (N = 784) examples found in the second row. The
third row presents the ten target images we created to serve as attractors for the
dynamics. Panel b) shows the creation of an eigenvector of matrix A. The image
is composed solely of the excitatory stationary parts of the two fixed points in the
Wilson-Cowan model. Each black pixel corresponds to a Z(!), while each white
pixel corresponds to a Z?). In general, to create K target vectors for a dataset,
we generate K vectors of size A/, where KLH components are set to ") and the
remaining components to Z?). Each unique target vector is constructed by setting
the components from kKLH to ((k+ 1)KL+2) —1 to zW, with all other components
set to 7?, with k = 0,..., K — 1 that identifies the label of a single class. Panel c)
illustrates the positions of the fixed eigenvectors and eigenvalues (in red) and the

trainable ones (in green). Recall that the matrix A is diagonalizable by definition.
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performed using Euler’s algorithm, discretizing time into steps of At = 0.1, unless
explicitly specified otherwise. At each iteration, denoted with the index n, the
system’s state 2t is updated according to the equation: zﬁfll =z + G(zgj))At,
where G(z)) is the system’s flux, defined in (I)). The total number of iterations,
Numaz, 1S determined a priori based on the desired simulation time 7" and the chosen
time step At through the relation n,,,, = L%j This approach allowed us to
efficiently simulate the system’s long-term behavior by iteratively applying Euler’s
update rule. Once the system reaches the final iteration, we use the value of the
solution to optimize the loss function.

To minimize the loss function in @, we specifically employ Accelerated Stochas-
tic Gradient Descent using the Adam optimizer [46], with a learning rate of 0.1,
unless explicitly specified otherwise. The learning rate, the number of epochs
needed to achieve optimal minimization of the loss function, the mini-batch size
used in the Adam algorithm, and the time 7" required to reach the stationary state
have been optimized empirically (see |[Appendix Al).

Once the training procedure terminates, we have a classifier governed by a
metapopulation of excitatory and inhibitory subpopulations. A sketch of the
dynamics is presented in Fig. [

Quantifying the effectiveness of the Wilson-Cowan model for metapopulation
as a learning algorithm requires a well-defined performance metric. We choose
to directly compare the generated output images with their corresponding target
counterparts.

To do this, we compare the output image with all K distinct and mutually
different targets. This comparison yields a vector with K components, where each

component represents the normalized L? distance between the output image and
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Figure 5: Dynamics of the model. The figure illustrates a schematic represen-
tation of our Neural Mass Network Model. Panel a) displays an image from the
MNIST (N = 784) dataset along with its associated target. The image features a
black pixel with a red border, which we track throughout its dynamics. Panel b)
shows this dynamic process. The equations are highlighted in red to emphasize
that we are focusing on that single pixel. This pixel is depicted as a red sphere
moving within a double well potential. Our model, we recall, is configured to
exhibit a bistable profile. Initially, the vector C_; is set to represent the black
pixel for both subpopulations of neurons. As the dynamics evolve according to
our model’s equations, the pixel explores the bistable profile. It does not stop
at the closest minimum; instead, it reaches the correct minimum designated for
classification, thanks to the learned coupling in the matrix A. Panel c) illustrates
the overall dynamics of the entire image. Starting from an initial condition—the
image we want to classify—the system uses the equations in to achieve the
final state, which is our stable attractor. The precision cutoff for this analysis has

been set to the seventh decimal digit.

20



the k-th target image, with £k = 1,..., K. Mathematically, we have:

SN LED (1) -TW))2
Ve L (D SO
YIIE: ”(T) T2
i = | VESE @OEDLreR || (10)

SN E (1) -T2
VO ED (R N T2

Since the normalized L? distance between two close images is close to zero, we
take the inverse of this value . In other words, we use the inverse of (77_’2}])) By
normalizing the new vector (Tﬁgf ))_1 to 1 and applying the arg max on it, we can

define the accuracy () as:

|Dtest|
1 .
= E §(arg max (7)), 11
dj ‘Dtest’ j=1 ( & (q )) ( )

()1,

SK 1[<*<”> o, and

where |Dyey| is the cardinality of the test set, [¢\7)], =

, 1 oif T'D
d(arg max ((jm)): it argmax () = : (12)

0 otherwise
d(arg max (cjm)) is, therefore, a binary random variable that allows us to
estimate the probability of success of our algorithm.
The computational complexity of our model, after the training process is
complete, is quantified as O(N?), resulting from simple matrix-vector multiplication

during the integration of the dynamics, where A represents the size of the input.

3The reader should note that the planted attractors are asymptotically stable, which means
that an infinite amount of time is required to reach the attractor exactly. In this situation, the
difference between the target and the output image of our Neural Mass Network Model, at finite
time, will be numerically very small. By taking the inverse of the normalized square difference,

we obtain an indicator for the argument to consider.
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5. Experimental Validations

This section presents the results obtained from our analysis. To facilitate

understanding, we divide the analysis into two subsections:

e Training from Scratch: The first subsection examines the performance of
classifying images on the MNIST and Fashion MNIST test sets when the

Neural Mass Network Model is trained from scratch. For details on these

datasets, see [Appendix A.ll

o Model Fine-Tuning with Pre-Trained Weights: The second subsection explores
the test set performance of a Wilson-Cowan model for metapopulation
in combination with convolutional neural networks [54] or a Pre-Trained
Transformer [92]. In the first case we will analyse the performance of the
combination across MNIST, Fashion-MNIST, CIFAR10, and TF-FLOWERS.
While in the second case, we perform a classification for the sentiment
analysis, i.e. IMDB dataset [73]. For details on these datasets, see
Al

5.1. Training from Scratch

Our initial analysis focuses on the stability of the system for classifying images of
the MNIST and Fashion MNIST datasets. According to the stability requirements
established in Section [3], the eigenvalues of the Jacobian matrix must have negative
real parts to ensure asymptotic stability at the embedded attractors. Top panel
of Fig. [6] visually displays the region where the eigenvalues of matrix A allow to
satisfy this property.

A critical distinction between the top panel of Fig. [ and Fig. [3] lies in the
value of the parameter ~, which plays a key role in governing the time scales
within the standard Wilson-Cowan model. While traditionally it is set to 0.25,

our work explores the impact of optimizing v during the training process. In
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Figure 6: Stability after training. Top panel: The figure shows the maximum
value of the real part of the eigenvalues s&) as a function of the parameter \;.
The two curves, with different colors, identify respectively the two different steady
states. Bottom panel: The figure shows the histogram of eigenvalues of matrix
A, trained on MNIST dataset. All of them satisfy the stability conditions. The
parameters here employed read w;; = 1, wig = 0.0, wgr = 2, wgg = 7.2, ag = 1.5,
a; =04, hy=—12,h; =0.1,7 =085, 8 = 3.7, f{) =0.25, ) =0.65, 8; =1,
=05, P =05, N =784
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Fig. [3l 7 begins with its typical value of 0.25. As stated before, a population
in each vertex is composed by 80% of excitatory and 20% inhibitory neurons.
However, during training, it undergoes optimization and converges to an optimal
value of 0.839 4 0.031 for the MNIST dataset ( for Fashion MNIST results see
Tab. . In this case, we have that a population in a vertex is composed by
54% of excitatory and 46% inhibitory neurons. These values suggest that, for
our particular Neural Mass Network Model, a mixed population offers significant
advantages for classification. However, we are working with a coarse-grained model
of metapopulation comprising excitatory and inhibitory subpopulations. As a
result, discrepancies with a real brain may occur. In fact, besides the discrepancy
in the ratio between inhibitory and excitatory subpopulations at a single vertex,
the topological structure of the learned graph also does not follow assortative
modularity, where nodes connect densely within their own community and sparsely
to nodes outside their community. Instead, we obtain a fully connected weighted
graph. In contrast to this topological structure, we observe that our adjecency
matrix A remains asymmetric throughout all the analyses performed in this
manuscript. Indeed, asymmetries in predicted communication efficiency reflect
neurobiological concepts of functional hierarchy and correlate with directionality
in resting-state effective connectivity, as analyzed using spectral dynamic causal
modeling [74]. Moreover, a principle of brain organization is that reciprocal
connections between cortical areas are functionally asymmetric [31].

The bottom panel of Fig. [f]illustrates the distribution of the final eigenvalues of
A for the MNIST dataset. As evident from the figure, all eigenvalues reside within
the designated region satisfying the imposed stability constraint. By combining
the findings from both panels of Fig. [6] we conclude that the investigated system
adheres to the stability requirements established in Section 3|

Having analyzed the distribution of eigenvalues and confirmed the stability
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”V(U“/)
MNIST 0.839(31)

Fashion MNIST | 0.922(35)

Table 1: Results of v over five different training runs for the MNIST and Fashion MNIST
datasets (N = 784). The numbers in parentheses represent the standard deviation of the mean
and they refer to the last digits. Number of epochs for each single realization was set to 525,
with batch-size equal to 200 for MNIST, while was set to 350, with batch-size equal to 200, for
FASHION-MNIST.

of the attractors in our Wilson-Cowan model for metapopulation, we can now
delve into how this stability affects the model’s dynamic behavior. Fig. [7| presents
visualizations of this connection.

This figure, containing two panels, visualizes the temporal evolution of the
degrees of freedom for both excitatory and inhibitory species in our system. As
previously established, our model is governed by a system of continuous ordinary
differential equations in both time and space, i.e., equation (1f). The top and
bottom panels depict the dynamics of all 784 degrees of freedom associated with
the excitatory and inhibitory species, respectively. Notably, the model rapidly
converges to its steady state within a short timeframe of just t = 2.5. While the
inhibitory species exhibits slightly slower dynamics (bottom panel), this delay does
not significantly impact the convergence of the excitatory species towards their
steady state. In fact, after t = 1.5 units, the excitatory population’s dynamics
become fully dominated by the stable attractors, indicating their rapid approach
to a steady state.

At this point, we can assess the classification performance of our biologically
inspired learning algorithm on the MNIST dataset. Utilizing the metric defined in
equation (11]), we achieve, on averaged, an accuracy of ¢» = 98.13% (with the best
performance at ¥pes = 98.16%). Comparing to a multilayer perceptron (MLP)
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Figure 7: Dynamics after training. Top panel: Evolution of all pixels from an
MNIST image under the excitatory species dynamics. Bottom panel: Evolution
of the same pixels from the same MNIST image under the inhibitory species
dynamics. The parameters here employed read w;; = 1, wrg = 0.0, wgr = 2,
wpg = 7.2, ag = 1.5, af = 0.4, hg = —1.2, hy = 0.1, v = 0.85, fg = 3.7,
fW =025 P =065 =1 =05 2 =05 N =784
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Figure 8: Cartoon of invertible property. This figure illustrates the forward
and backward dynamics of our Wilson-Cowan model for metapopulation through
a cartoon representation. The algorithm takes an image as input, accurately
classifies it, and subsequently reconstructs the original image entirely based on
the final state of the forward dynamics. The parameters here employed read
wir=1,wig =00, wgr =2, wgp =72, ag =15, ay =04, hg = —1.2, h; = 0.1,
v =085, By =3.7, ) =025, 2 =065 8, =1, fI) =05, [ =05, T =35,
At = 0.0001, N' = 784.
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(with one hidden tanh layer with 764 neurons, one output softmax layer with
10 neurons, and with a cross entropy loss function), our algorithm exhibits an

accuracy only marginally lower (0.13% difference against the best performance).

All the results, also for the Fashion MNIST dataset, are presented in Tab.

Y(oy) | M (opmer)
MNIST 0.9813(3) | 0.9829(13)
Fashion MNIST | 0.8839(19) | 0.8955(30)

Table 2: Results of accuracy of our model (first column) and accuracy of MLP (second column),
over five different training runs for the MNIST and Fashion MNIST datasets (N = 784). The
numbers in parentheses represent the standard deviation of the mean and they refer to the last
digits. Number of epochs for each single realization was set to 525, with batch-size equal to 200

for MNIST, while was set to 350, with batch-size equal to 200, for FASHION-MNIST.

To compare our method with other approaches in the current literature, we
reviewed studies on the MNIST and Fashion-MNIST datasets that utilized various
techniques with attractors in their dynamics, as in Hopfield networks that are
Recurrent Neural Networks and biological inspired. However, these methods, at
best, achieved performance metrics below 70% for the MNIST dataset[8], 53], and
63% for the Fashion-MNIST dataset [30]. Even with a supervised approach that
transforms Hebb’s rule into a genuine learning rule, the accuracy only reached 94%
for MNIST and 84% for Fashion-MNIST [3].

Additionally, we compared our results with those obtained by Krotov and
Hopfield in their work [52]. In this study, the authors demonstrated that the
Hopfield network can be modified by using a non-linear (e.g., polynomial) function
in the Hamiltonian, allowing it to store a polynomial number of memories, rather
than just a linear one. These memories are stable attractors of the discrete
dynamics. Furthermore, the authors showed that these modified networks, known

as Dense Associative Memory (DAM) networks, can also function as classifiers
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when a continuous non-linear function is applied in the asynchronous dynamics
and a stochastic gradient descent is used to optimize the weights.

For instance, DAMs achieve a test error of 1.6% on the MNIST dataset, while
our Wilson-Cowan model for metapopulation achieves a test error of 1.9%. In
other words, our model performs on par with DAMs.

This model also offers a simple invertible property. By employing a straightfor-
ward transformation, 7 = T" — ¢ [60], which effectively reverses the dynamics of
the system, we can integrate the dynamics backwards, starting from the terminal
position of the forward dynamics, and rebuild the initial condition from which we
started with. The modified evolutionary law for this backward integration becomes
z = —(G(z), with the temporal derivative now taken concerning the variable 7. A
simple cartoon is presented in Fig. [§

Our analysis was performed on simple grayscale image datasets of size 28 x 28.

Such an analysis is computationally fast, as showed in for different

image sizes. We performed also ablation experiments on our model, and such
experiments are presented in[Appendix E| However, testing colored images, such as
those in the CIFAR-10 and TF-FLOWERS datasets, which have sizes 32 x 32 x 3
and 224 x 224 x 3 respectively, can be time-consuming due to the increased
dimensionality of these images. To avoid such bottlenecks, we test our model with
CNNs, which are biologically inspired. Additionally, we investigate whether the
well-known concept of transfer learning [38] can be applied to our model. These

analyses are presented in the following subsection.

5.2. Model Fine-Tuning with Pre-Trained Weights

In this section, we present experimental validation of our Neural Mass Network

Model in combination with CNNs and Transformers.
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5.2.1.  Wilson-Cowan model for metapopulation in combination with a Convolu-
tional Neural Network

Computational models validate intuitions about how a system works by pro-
viding a way to test those intuitions directly. They offer a means to explore
new hypotheses in an ideal experiment. CNNs are an example. They came from
pioneering research in neuroscience, which gave insights into the nature of visual
processing in mammals including humans. In such a pioneering research, [41]
discovered two major cell types in the primary visual cortex (V1) of cats (see Fig.
|§|7 Panel b)). The first type, the simple cells, respond to bars of light or dark when
placed at specific spatial locations. The second type, complex cells, have less strict
response profiles. These complex cells are likely receiving input from several simple
cells, all with the same preferred orientation but with slightly different preferred
locations. From such observations, Fukushima developed the Neocognitron [32],
a precursor to modern CNN. This computational model contains two main cell
types: the S-cells and the C-cells. The S-cells are named after simple cells and
replicate their basic features on a plane, as well as the C-cells (named after complex
cells) that are nonlinear function of several S-cells coming from the same plane
but at different locations. After a plane of simple and complex cells representing
the basic computations of V1, the Neocognitron simply repeats the process again.
From these ideas, finally CNNs arose. A CNN is a type of deep learning model
[54] specifically designed for processing structured grid data, like images. CNNs
automatically and adaptively learn spatial hierarchies of features from input images
through convolutional layers, pooling layers, and fully connected layers. For more
on architectures and applications of CNNs, we suggest the reviews [55], [100].

CNNs can mimic and simulate the representation of visual information along
the ventral stream (see Fig. [0 Panel a)). In particular, the activity of the

artificial units of CNNs predicts the activity of real neurons in animals, with
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very high accuracy. For example, in [08] the authors showed the existence of a
strong correlation between a biologically plausible hierarchical neural network
model’s categorization performance and its ability to predict individual inferior
temporal (IT) neural unit response data. Furthermore, the activity of units from
the last layer of the network best predicted IT activity and the penultimate layer
best predicted V4, in visual cortex. Many other works have been developed in
this direction, demonstrating that several deep CNN architectures exhibit similar
performance to human and monkey object classification [55], [79].

Merging, therefore, a CNN with our Wilson-Cowan model for metapopulation
seems reasonable. Indeed, both models appear to be biologically inspired and,
when validated separately, address some aspects of brain function.

Such a new model could, in principle, retain all the validated aspects of a visual
system provided by the CNN part and then, at the end of the ventral cortical
visual system (i.e., the IT), incorporate a recurrent network—our Wilson-Cowan
model for metapopulation—that contains some long-term memories, which we
define as our planted attractors. The IT region, indeed, is a brain region where
visual perception meets memory and imagery [68]. Long-term memory refers to
the brain’s process of taking information from short-term memory and creating
long-lasting memories [85]. These memories are stable and easily accessible, like our
planted attractors. Moreover, long-term memories can include information related
to activities learned through practice and repetition, similar to how a learning
algorithm operates. However, validating such a computational model is extremely
challenging. We must begin, therefore, with the initial steps of implementing the
model and analyzing its performance on various visual classification tasks. We
defer in-depth analyses for validating the model with neurobiological data to future
publications.

We begin by analyzing the MNIST and Fashion MNIST datasets to determine
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Figure 9: Description of biological and artificial object recognition. The
figure illustrates a schematic representation of how object recognition and classifi-
cation, in the brain and artificially, should work. Panel a) simply describes the
position of the visual cortex (see [Appendix C)). Panel b) shows the relationship
between components of the visual system (Biological) and the base operations
of a CNN (Artificial). Biological: cartoon of simple cells (blue) and complex
cells (green) [41]. Simple cells have preferred location in the image (dashed ovals).
Complex cells receive input from many simple cells and thus have more spatially
invariant responses. Artificial: the first convolutional layer (blue) is produced
by applying a small filter (square box) to every location in the image. Such
operation creates a collection of feature maps. For each feature map, for example,
the maximal activation in the square blue box can be taken. Such an operation
downsamples the image and leads to a complex cell-like plane (green). Panel c)
illustrates a sketch of the CNN model that we use. It has a series of convolutional
and pooling layers. It terminates with a set of dense layers that are connected
to a Wilson-Cowan model for metapopulation (N = 784). Given an input, the
CNN feeds forward through all its layers to arrive at our model, which iteratively

converges to the planted stationary state.
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if adding a CNN in front of our Wilson-Cowan model for metapopulation can

improve classification accuracy. The architectures and training hyperparameters

used are detailed in [Appendix A.T] The results are presented in Table [3]

W(oy) | SOTA
MNIST 0.9931(8) | 0.9987
Fashion MNIST | 0.9135(16) | 0.9691"
CIFARIO | 0.8659(21) | 0.9950¢
TF-FLOWERS | 0.8485(37) | 0.98¢

& [

> [0

€ SOTA obtained by using transformer architecture [27]. The
best VGG-16 [86] has an accuracy of 0.93[34].

d SOTA obtained by using transformer architecture[47].

Table 3: Results of accuracy of our model (first column) and state-of-the-art (SOTA) (second
column), over five different training runs for the MNIST, Fashion MNIST, CIFAR10 and TF-
FLOWERS datasets. The numbers in parentheses represent the standard deviation of the mean
and they refer to the last digits.

As the reader can see, the results obtained by our simple CNN combined
with our Wilson-Cowan model for metapopulation are satisfactory. Indeed, for
the MNIST dataset, our new model seems to be close to the state-of-the-art,
differing by only 0.5%, on average. However, for the Fashion MNIST dataset, the
discrepancy increases to 5%, on average, compared to the state-of-the-art.

For both datasets, the v parameter appears to remain close to the accepted
values for a biological model (see Tab. . Indeed, the populations of excitatory
neurons in all cortical areas should be around 70 — 80% [21], so our optimal values

fell within the right range for the ratio between inhibitory and excitatory neurons.

We then decided to implement a VGG-16 architecture (see |[Appendix A.2)

for classifying the CIFAR-10 dataset. In this case, we observed that the accuracy
obtained is on average 1 = 86.59% (with the best performance at 1.5 = 86.83%),
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”V(U“/)
MNIST 0.330(34)

Fashion MNIST | 0.252(8)
CIFARI0 | 0.247(1)
TF-FLOWERS | 0.25(0)

Table 4: Results of v over five different training runs for the MNIST, Fashion MNIST, CIFAR10
and TF-FLOWERS datasets. The numbers in parentheses represent the standard deviation of

the mean and they refer to the last digits.

thanks to the deep convolutional architecture used. Although our model lacks
specific dropout and batch normalization layers, and data augmentation techniques
that are typically used in the best VGG-16 implementations, our performance
remains reasonably high compared to many other CNN architectures. For further
comparison, the reader shall refer to the performance benchmarks available at this
link [

For the last analysis, we chose to check if transfer learning still works with
our model. In general, transfer learning can be used to improve performance on a
task A for which training data is in short supply by using data from a related task
B, for which data is more plentiful. The two tasks should have the same kind of
inputs, and there should be some commonality between the tasks so that low-level
features, or internal representations, learned from task B will be useful for task A.
When data for task A is very scarce, we might simply retrain the final layer of the
network. In contrast, if there are more data points, it is feasible to retrain several
layers. This process of learning parameters using one task that are then applied to
one or more other tasks is called pre-training [10].

We, therefore, confined ourselves to work with a small dataset, TF-FLOWERS

4https://paperswithcode.com/sota/image-classification-on-cifar-10
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Figure 10: Description of TF-FLOWERS dataset. The figure illustrates
the composition of TF-FLOWERS dataset. The first row shows the labels of the
examples found in the second and the third row. The fourth row presents the five

target images we created to serve as attractors for the dynamics (N = 784).
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(see reftflowers for details). This dataset is composed of 3670 colored 224 x 224 x 3
images of flowers, categorized into K = 5 distinct classes: daisy, dandelion, roses,
sunflowers, and tulips. An example of such images is presented in Fig. It is our
task A, and as the reader can see, the dataset is scarce in the number of images,
but not in the details of each image. We, therefore, decided to use the VGG16
model trained on the IMAGENET datasetlﬂ (task B) for transfer learning, and then
train just the last layers, as well as our Wilson-Cowan model for metapopulation

(see [Appendix A.4)).

The performance of this algorithm, as described in Table [3] reaches on average
84.85% (with the best performance at 1.5 = 85.28%). This demonstrates that
transfer learning is effective, as expected, when combining a pre-trained CNN
with our Wilson-Cowan model for metapopulation. However, the high number of
parameters reduces the biological plausibility of the model. Indeed, the parameter
can be considered a free parameter that does not significantly affect the algorithm’s

performance, if chosen reasonably.

5.2.2.  Wilson-Cowan model for metapopulation in combination with a Pre-Trained
Transformer

We have previously observed that the use of CNNs significantly enhances the

accuracy of models. These networks draw inspiration from biological systems and

exhibit remarkable similarities to specific regions of the human brain. Recently,

CNNs have also been employed to describe and understand how emotional patterns

are integrated into the human visual system [49]. However, CNNs fall short in

°The IMAGENET dataset [22] comprises 14 million natural images each of which has been
hand labelled into one of nearly 22000 categories. A subset of images comprising 1000 non-
overlapping categories is often used for pre-training models in deep learning. The fact to have so
many categories made the problem much more challenging because, if the classes were distributed

uniformly, random guessing would have an error rate of 99.9%.
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replicating another fundamental capability of the human brain: the comprehension
and production of language.

Human language processing is one of the most fascinating capabilities of our
brain. It relies on a set of interconnected brain areas in the frontal and temporal
lobes, typically in the left hemisphere, forming a network. This language network
supports both comprehension (spoken, written, and signed) [24] and production
[39]. It has been extensively studied to understand its sensitivity to linguistic
regularities at multiple levels [80].

Given the structural similarities between our Wilson-Cowan model for metapop-
ulation and the topological configuration of a language network, it seems reasonable
to apply our model to this context. We aim to determine if the Wilson-Cowan
model could effectively perform a simple classification task within this framework.
To investigate this, we combined our approach with a novel machine learning
architecture: transformers.

Transformers, as described by [92] in their seminal work, have become the
most trending topic in natural language processing (NLP) due to their outstanding
performance in capturing formal linguistic competence—i.e., the knowledge of
rules and statistical regularities of language. However, they exhibit limitations in
functional linguistic competence, which involves the practical use of language in
real-world situations [56].

This section explores the potential synergy between our model and a transformer
architecture. We explore this synergy to address the limitations of the Wilson-
Cowan model for metapopulation in extrapolating the complex structural patterns
embedded in language. Therefore, we utilize a transformer architecture, specifically
BERT [25], to extract the most important features from the text for a classification
task with our Neural Mass Network Model.

To achieve this, we chose to perform sentiment analysis on the IMDB dataset
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(see [Appendix A.5). Sentiment analysis is an NLP technique used to determine

the emotional tone behind a body of text. This process involves analyzing text
data to identify and categorize the sentiments expressed, typically as positive or
negative. The IMDB dataset consists of movie reviews from the Internet Movie
Database, with each review labeled as either positive or negative. Therefore, the
classification task is a straightforward binary classification.

To be precise, we fine-tune a BERT model in combination with our Wilson-

Cowan model (see|Appendix A.5|), which in this case, as a reminder, has two stable

attractors planted in the dynamics. Given the simplicity of our binary classification
task, we slightly modify the training process. We use binary cross-entropy as
the loss function. To achieve this, we transform the output of the Wilson-Cowan
model for metapopulation into a probability of belonging to a class. This is done
by taking the normalized inverse vector, obtained by normalizing the L? distance
between the terminal condition of the system of Wilson-Cowan equations and the

respective target, i.e. equation ([11)).

Y(oy) VBERT(Oypprr) SOTA
IMDB | 0.8746(22) 0.8830(3) 0.9668 [20]

Table 5: Results of accuracy (1) of our model (first column), accuracy of BERT without our
Wilson-Cowan model and trained with the same hyper parameters of our model (second column),
state-of-the-art (third column), over five different training runs for the IMDB. The numbers in

parentheses represent the standard deviation of the mean and they refer to the last digits.

The accuracy results are presented in Tab. [5 As the reader can see, the
performance of our model in synergy with BERT is comparable to that of BERT
alone. However, in comparison to the state-of-the-art (SOTA) models, our per-
formance is 9% points lower. This discrepancy is due to the fact that current
SOTA classifications are dominated by massive transformers, which have parameter

counts that are two or more orders of magnitude greater than those of the BERT
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model. As detailed in our choice of architecture was also influenced

by the hardware limitations we faced.

6. Conclusion

In this manuscript, we have presented a Wilson-Cowan model for metapopu-
lation capable of learning to classify images and text. We began by defining the
model and detailing the methodology for embedding stable attractors within the
metapopulation dynamics. Subsequently, we explained how to train this model
using a supervised learning framework. We then conducted various numerical
analyses to demonstrate the high accuracy this model can achieve across different
classification tasks.

Although our method, even when combined with other computational neural
models, achieves high accuracy, it does not surpass the state-of-the-art deep
learning algorithms for classification tasks. This gap is primarily due to our choice
of architecture, which, while once state-of-the-art, has been eclipsed by models
with significantly more learning parameters, exceeding our hardware capabilities.
However, as demonstrated, our model’s performance is still close, but not equal, to
the maximum accuracy achieved by those advanced models. There are two main
reasons for this discrepancy: (i) We embed and enforce stability on our attractors
(targets), thus limiting the solution space within which the learning algorithm can
search for an optimal solution. (ii) We did not employ any image preprocessing
techniques, such as data augmentation, or advanced engineering tricks in building
the architecture, as our focus was not on achieving state-of-the-art performance
but on demonstrating the functionality of our biologically inspired model.

A careful reader may have wondered why we have not claimed that our model is
a plausible biological model but have only described it as biologically inspired. This

distinction arises primarily because, despite numerous connections to biological
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behavior and topological similarities with brain structures, our model is trained
using the backpropagation algorithm. This training method prevents us from
identifying our model as a truly plausible biological model.

However, backpropagation can be viewed as an efficient way to achieve reason-
able parameter estimates, which can then be subjected to further testing. Even
if backpropagation is considered merely a technical solution, the trained model
may still serve as a good approximation of neural systems. Currently, many
researchers are exploring new supervised learning optimization algorithms that are
more biologically valid, i.e., neurobiologically plausible methods by which the brain
could adjust its internal parameters to optimize objective functions [87]. Future
publications will aim to validate new biologically plausible Wilson-Cowan models

for metapopulation that can effectively learn visual or textual patterns.
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Appendix A. Datasets, CNN Architectures, hyper-parameters and

training tricks

All the architectures in this manuscript were chosen to fit with our hardware

(see |Appendix B|), ensuring that results could be obtained within a reasonable

time frame.

Appendiz A.1. MNIST and Fashion MNIST

The MNIST dataset [23] is composed by 70000 grey scale handwritten images
of size 28 x 28 in K = 10 classes. The dataset is divided in 60000 images for
training set and 10000 for test set.

The Fashion-MNIST dataset [97] is composed by 70000 grey scale Zalando’s
article images of size 28 x 28 in K = 10 classes. The dataset is divided in 60000
images for training set and 10000 for test set.

The CNN for these analyses is composed by two convolutional layers with 32
feature channels with kernel size 3 x 3, each utilizing the ReLU activation function.
Each convolutional layer is followed by a max pooling layer with pool size 2 x 2.
After these layers, a flatten layer is used to convert the output for the dense layers.
The CNN output is then passed to three distinct dense layers with 2048, 1024, and
784 neurons, all using the ReLLU activation function. The second and third dense
layers are preceded by a batch normalization layer. The output of the third dense
layer is then passed to our Wilson-Cowan model for metapopulation, with N = 784.
The total number of parameters is 5179521, divided into 615441 parameters for
our Wilson-Cowan model for metapopulation and 4564080 for the CNN part plus

the three dense layers.
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We used a learning rate of 0.0001 for this analysis. We performed an initial
training procedure only on the CNN part plus the three dense layers, using a mini-
batch size of 10 for 35 epochs. Then, we conducted a complete training procedure
for the entire model, including our Wilson-Cowan model for metapopulation, with
a mini-batch size of 200 for 70 epochs and a value of T = 3.5A¢t~!, where At = 0.1.

The loss function was set to be always the one in equation @

Appendiz A.2. VGG-16
The VGG-16 [86] model, where VGG stands for the Visual Geometry Group,

who developed the model, and 16 refers to the number of learnable layers in
the model, has some simple designed principles leading to a relative uniform
architecture that minimizes the number of hyperparamete choices that need to be
made. In principle, it was developed to take an input image having 224 x 224 x 3
colored pixels (RGB channels), followed by sets of convolutional and pooling layers
for downsampling. It can be also applied to smaller color images 32 x 32 x 3. Here
we present the original architecture as described in [10].

On each convolutional layer is applied a filter of size 3 x 3 with a stride of
1, same padding, and a ReLLU activation function. Each pooling layer, instead,
applies a maximum pooling operation with stride 2, filter size 2 x 2, downsampling
the number of units by a factor 4. To be precise, the first learnable layer is
a convolutional layer in which each unit takes input from a 3 x 3 x 3 tensor
from the stack of input channels, and so has 28 parameters including the bias.
These parameters are shared across all units in the feature map for that channel.
There are 64 such feature channels in the first layer, giving an output tensor of
224 % 224 x 64. The second layer is also convolutional and again it has 64 channels.
This is followed by the first maximum pooling layer that gives feature maps of size
112 x 112. The third and the fourth layer are again convolutional, of dimensionality

112 x 122 with 128 channels. This is again followed by a maximum pooling layer
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to give a feature map size 56 x 56, followed by three convolutional layers with 256
channels and followed again by another maximum pooling layer to give a feature
map size 28 x 28. The output of this layer is feed forwarded to another set of
three convolutional layers each having 512 channels, followed by another maximum
pooling layer, which downsamples to feature maps of size 14 x 14. This is followed
by three more convolutional layers, with 512 channels, and another maximum
pooling layer for downsampling to 7 x 7, with 512 channels. Finally, for making
classification, three dense layers are added. In this manuscript, the last three dense

layers are modified (see main text, and later subsections).

Appendiz A.3. CIFARI10

The CIFAR-10 dataset [51] is composed by 60000 colored images of size 32 x
32x3in K = 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck), with 6000 images per class. There are 50000 training images and 10000
test images. The CNN for this analysis is composed by the VGG16 architecture

(see [Appendix A.2)). After these layers, a flatten layer is used to convert the

output for the dense layers. The CNN output is then passed to three distinct dense
layers with 2048, 1024, and 784 neurons, all using the ReLLU activation function.
The second and third dense layers are preceded by a batch normalization layer.
The output of the third dense layer is then passed to our Wilson-Cowan model
for metapopulation, with N/ = 784. The total number of parameters is 19294817,
divided into 615441 parameters for our Wilson-Cowan model for metapopulation
and 18679376 for the CNN part plus the three dense layers.

We used a learning rate of 0.0001 for this analysis. We performed an initial
training procedure only on the CNN part plus the three dense layers, using a mini-
batch size of 10 for 70 epochs. Then, we conducted a complete training procedure
for the entire model, including our Wilson-Cowan model for metapopulation, with

a mini-batch size of 200 for 70 epochs and a value of T' = 3.5A¢t~!, where At = 0.1.
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The loss function was set to be always the one in equation @

Appendiz A.4. TF-FLOWERS

The TF-FLOWERS dataset [91] is composed by 3670 colored 224 x 224 x 3
images of flowers, categorized into K = 5 distinct classes: daisy, dandelion, roses,
sunflowers, and tulips. We chose 90% of the dataset as training images and 10%

test images. The CNN for this analysis is composed by the VGG16 architecture

(see|Appendix A.2)), with pre-trained weights given by IMAGENET dataset. After

these layers, a flatten layer is used to convert the output for the dense layers. The
CNN output is then passed to four distinct dense layers with 4096, 2048, 1024,
and 784 neurons, all using the RelLU activation function. The second and third
dense layers are preceded by a batch normalization layer. The output of the third
dense layer is then passed to our Wilson-Cowan model for metapopulation, with
N = 784. The total number of parameters is 129460641, divided into 615441
parameters for our Wilson-Cowan model for metapopulation and 128845200 for
the CNN part plus the three dense layers.

We used a learning rate of 0.001 for this analysis. We performed an initial
training procedure only on the CNN part plus the three dense layers, using a mini-
batch size of 10 for 70 epochs. Then, we conducted a complete training procedure
for the entire model, including our Wilson-Cowan model for metapopulation, with
a mini-batch size of 32 for 100 epochs and a value of T' = 3.5A¢t~!, where At = 0.1.

The loss function was set to be always the one in equation @

Appendiz A.5. IMDB

The IMDB (Internet Movie Database) dataset [73] is a comprehensive and
widely-used dataset in the field of machine learning and data analysis, particularly
for tasks involving natural language processing (NLP) and sentiment analysis.

This dataset contains extensive information on movies, television shows, and other
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forms of visual entertainment. The labeled data set consists of 50000 IMDB movie
reviews, specially selected for sentiment analysis. The sentiment of reviews is
binary, meaning the IMDB rating < 5 results in a sentiment score of 0, and rating
> 7 have a sentiment score of 1. No individual movie has more than 30 reviews.
The 25000 review labeled training set does not include any of the same movies
as the 25000 review test set. In addition, there are another 50000 IMDB reviews
provided without any rating labels.

For this analysis we consider transformer language model based on encoders,
which are models that take sequences as input and produce fixed length vectors,
such a class labels, as output. More precisely, we use the Bidirectional Encoder
Representations from Transformers (BERT) architecture, which is a pre-trained
language model [25]. Unlike other language representation models, BERT is
designed to pretrain deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right context in all layers. For our analysis
we used the so called BERTgasg model [25]. It is composed by 12 transformer
layers, with hidden sizes equal to 768 and with 12 self-attention heads. The total
number of parameters for BERT is set to 109482241.

This language model is then associated with a dropout layer with a parameter
p = 0.5 and a dense layer of 512 neurons with a sigmoid activation function.
Following this, we integrate our Wilson-Cowan model for metapopulation (with
N =512), ending up with a final model with 110138626 . As stated in the main
text, we perform a modification for this particular classification task. Specifically,
we do not compare the final state of the dynamics with the respective planted
eigenvector anymore. Instead, we apply a non-linear transformation to the final
state, normalizing the inverse of equation , to obtain a straightforward output
for our K = 2 class problem. Consequently, we derive a probability to be in one of

the two classes, allowing us to apply binary cross-entropy as the loss function and
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utilize binary accuracy to test the performance of our learning algorithm. We used
a learning rate of 0.00003, and we fixed the number of epochs for the fine-tuning
of the whole network at 10, with mini-batch size equal to 4. The final time 7" was
set to be equal 4.0At™ !, with At = 0.1. For the tokenization of the dataset, we

have followed the tutorial given at this link/[f .

Appendix B. Hardware Specification

All the analyses presented in this manuscript were run on a Lenovo 256GB

RAM workstation with 2 GPU NVIDIA-RTX A5500, 24GB RAM each.

Appendix C. Visual Cortex

The visual cortex (grey, purple and green) is the primary cortical region of the
brain that receives, integrates, and processes visual information relayed from the
retinas. It is in the occipital lobe of the primary cerebral cortex, which is in the
most posterior region of the brain. The visual cortex divides into five different areas
(V1 to V5) based on function and structure. In figure [J| Panel a), only the positions
of V1, V2, and V4 are presented for the sake of simplicity. Inferior Temporal (IT)
is the cerebral cortex on the inferior convexity of the temporal lobe in primates
including humans. It is crucial for visual object recognition and is considered to be
the final stage in the ventral cortical visual system (grey and purple). The ventral
stream transforms visual inputs into perceptual representations that embody the
enduring characteristics of objects and their spatial relations. The ventral stream
begins with V1, goes through visual area V2, then through visual area V4, and
to the inferior temporal cortex. The ventral stream, is associated with form

recognition, object representation and storage of long-term memory [84, [67]. The

Shttps: //www.tensorflow.org/text /tutorials/classify_text_with_bert
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dorsal stream (grey and green) begins with V1, goes through area V2, then to the
dorsomedial area and middle temporal area and to the posterior parietal cortex.
The dorsal stream’s job is to mediate the visual control of skilled actions, such
as reaching and grasping, directed at objects in the world. To do this, the dorsal
stream needs to register visual information about the goal object on a moment-to-
moment basis, transforming this information into the appropriate coordinates for

the effector being used [84] [67].

Appendix D. Scaling Analysis

In this appendix, we present an analysis of the scaling behavior [59] of our
neural mass network model when applied to classification tasks on the MNIST
and Fashion MNIST datasets. We analyze how accuracy scales with the image
size. To achieve this, we create new datasets from the original ones, where the
image sizes are 14 x 14, 17 x 17, 21 x 21, 24 x 24, 28 x 28, 31 x 31, and 35 x 35.

Table shows the accuracy as a function of the input size A for MNIST,
while Table for Fashion MNIST. For both tables, The first column identifies
the size of the image, the second the value of the v parameter, the third one the

accuracy of the model, and the last column is the time for a single epoch in seconds

on our hardware
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N v ¢ | time for each epoch [s]
196 | 0.86046 | 0.9746 2
289 | 0.8822 0.98

441 | 0.8311 | 0.9818 4
276 1.066 | 0.9815 3
784 | 0.839 | 0.9813 7
961 0.827 | 0.9781 10
1225 | 1.044 | 0.981 12

Table D.6: Scaling of neural mass network model on varying image sizes for MNIST dataset.

Total number of epochs 525, batch size 200.

Appendix E. Ablation experiments

In this appendix, we present several ablation experiments [66] on our neural
mass network model. We focus on the MNIST dataset and test the hypotheses
required to enable the model to function as a classifier.

We begin by removing the stability criterion from our model while keeping all
other conditions fixed. Specifically, we force the eigenvalues of the matrix A to fall
outside the stability region. However, when we do this, the optimization process
becomes infeasible, preventing us from transforming the Wilson-Cowan model for
metapopulation into a classifier.

From this reason, stability is always preserved in our model. Next, we performed
ablation on the planted eigenvectors. In this setup, we maintained the stability
regions for the trainable eigenvalues, retained the target structure using the fixed
points of the dynamics (as presented in this work), kept the zero eigenvalues
fixed, and removed the planted eigenvectors, allowing the model to learn them
automatically. We observed that the model was able to construct these eigenvectors;

however, it achieved a lower accuracy, classifying correctly only 97.83% of the test
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N v ¢ | time for each epoch [s]
196 | 0.8625 | 0.8752 2
289 | 1.064 | 0.8794

441 | 0.971 | 0.8788 4
576 | 0.910 | 0.8853 5
784 | 0.992 | 0.8839 7
961 | 1.016 | 0.8847 10
1225 | 1.016 | 0.887 12

Table D.7: Scaling of neural mass network model on varying image sizes for Fashion MNIST

dataset. Total number of epochs 350, batch size 200.

set images after training.

We then analyzed the model under the condition that the fixed eigenvectors
are not required to remain within the kernel of A, while all other components of
the model were kept unchanged. In this experiment, we set the fixed eigenvalues
to 0.1. Under these conditions, the accuracy decreased to 97.28%, compared to
the case in which the fixed eigenvectors remain in the kernel of A.

In conclusion, we observed that the combination of all methods used to construct
the Wilson-Cowan model for metapopulation as a classifier is essential for achieving
high accuracy. Furthermore, we found that the stability criterion is the most crucial
component of the model; without it, our model cannot be used for classification

tasks
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