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Abstract

The Wilson-Cowan model for metapopulation, a Neural Mass Network Model,

treats different subcortical regions of the brain as connected nodes, with connec-

tions representing various types of structural, functional, or effective neuronal

connectivity between these regions. Each region comprises interacting populations

of excitatory and inhibitory cells, consistent with the standard Wilson-Cowan

model. In this paper, we show how to incorporate stable attractors into such a

metapopulation model’s dynamics. By doing so, we transform the Neural Mass

Network Model into a biologically inspired learning algorithm capable of solv-

ing different classification tasks. We test it on MNIST and Fashion MNIST in

combination with convolutional neural networks, as well as on CIFAR-10 and

TF-FLOWERS, and in combination with a transformer architecture (BERT) on

IMDB, consistently achieving high classification accuracy.
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1. Introduction

Understanding brain information processing requires building computational

models that are capable of performing cognitive tasks [50]. A brain computational

model is a mathematical model that mimics the brain information processing

underlying the performance of some task at some level of abstraction. At microscale,

biological processes that underlie brain computation are described by biophysical

models [70, 75], while, at macroscale, processes occurring in the brain are modeled

by brain-dynamical and causal-interaction models [43, 89]. In the past decades,

the field of computational neuroscience has developed many mathematical models

of elementary computational components [64, 81] and their implementation with

biological neurons [1]. In this paper, we discuss one of them: the Wilson-Cowan

model [94].

The Wilson-Cowan model describes the evolution of excitatory and inhibitory

activity in a synaptically coupled neuronal network. As opposed to being a detailed

biophysical model, it is a coarse-grained description of the overall activity of a

large-scale neuronal network, employing just two differential equations [45]. As

such, they embraced nonlinear dynamics, but in an interpretable form, i.e., they

were motivated by physiological evidence [69], which suggested the existence of

certain populations of neurons with similar responses to external stimuli [42].

Indeed, it was the first mathematical formulation to emphasize the significance

of interactions between excitatory (E) and inhibitory (I) neural populations in

cortical tissue [36], thereby incorporating both cooperation and competition [96].

This model has been widely used to study various aspects of neural activity: as a

single-node description of excitatory-inhibitory population dynamics, as a building

block for larger-scale brain network modeling studies, and as the underpinning

of spatially extended models of neural dynamics at the tissue scale. It takes

into account essential parameters such as the strength of synaptic connections
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among each type of neuronal population and the intensity of input received by

each population. By manipulating these parameters, the model can replicate a

range of dynamic brain behaviors, including multistability [44] and limit cycles [94].

Other applications are: stable inhomogeneous steady states that store information

dynamically and suggest a basis for short-term memory [15], oscillations [63],

traveling waves [37], and the formation of spatial patterns [95]. Additionally,

the model captures information processing [16], binocular rivalry [93], cognitive

dynamics of movement [29], phase-amplitude coupling [28], neuroimaging data

[35], cortical resonant frequencies [19], epilepsy [95, 65], and decision [9], among

other complex brain activities [72, 48]. Lastly, Wilson–Cowan models are a key

component of the Virtual Brain project that aims to deliver the first simulation of

the human brain based on personalized large-scale connectivity [83].

Building upon these foundational methods, the Wilson–Cowan model has

been extended providing a deeper insight into the emergent collective behaviors of

networks across multiple scales of organization [71]. Most obviously, it is possible to

generalize to multiple excitatory and inhibitory populations reflective of particular

cortical areas and functions. For examples, [18] studied the dynamics of a network

of Wilson–Cowan model (a system of connected Wilson–Cowan oscillators). By

observing that information transfer within each cortical area is not instantaneous,

they consider a system of delay differential equations with two different kinds of

discrete delay for exploring a variety of larger networks, in order to determine how

the network topology will influence time delayed Wilson–Cowan dynamics. They

find that network structure can regularize or deregularize the dynamics. In [82],

the authors, instead, use personalized Alzheimer’s disease computational models

built on whole-brain Wilson-Cowan oscillators to evaluate the direct impact of

toxic protein deposition on neuronal activity.

Although the applications of the Wilson-Cowan model seem to cover many
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areas, a fundamental gap, as far as we know, remains: these extensions have not

yet been applied to perform cognitive tasks, such as learning patterns in image

recognition or general classification tasks.

To fill this gap, in this paper, we consider a network metapopulation form of the

Wilson-Cowan model (a Neural Mass Network Model [14]). Biologically speaking,

such a network treats different subcortical regions of the brain as connected nodes,

and the connections represent various types of links between them, as structural,

functional, or effective connectivity between these distinct subcortical regions [26].

Within each region, or node of the network, there are interacting subpopulations

of excitatory and inhibitory cells [6], in accord with the standard Wilson-Cowan

model (a cartoon is displayed in Fig. 1). Moreover, noting that since long-range

connections in the brain mainly project from excitatory pyramidal cells [7, 33], we

restrict couplings between brain regions to connections between only excitatory

subpopulations.

Given such a network, we aim to explore the learning capabilities and general-

ization abilities on classification tasks. To do so, we present, as in [58], a method

for planting stable attractors into the dynamics of this Neural Mass Network Model

(as described in Sec. 2, 3, 4 and illustrated in Fig. 4). The presented method

incorporates stable attractors into the model’s dynamics, identifiable as targets for

the classification task. These attractors are pairs of eigenvectors and eigenvalues of

the adjacency matrix of the graph, selected a priori to meet the task requirements.

Each eigenvector, used as long-term memory, consists of stable fixed points of

the dynamics of each node. When the model reaches an attractor, the dynamics

stabilizes, positioning on one of the targets of the classification task.

Using machine learning techniques to learn the others eigenvectors and eigenval-

ues of the matrix, we validate the classification performance of such a model (and

combinations with Convolutional Neural Networks (CNNs)) on MNIST dataset
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Figure 1: Cartoon of the Neural Mass Network Model. This figure illustrates

a cartoon of the Neural Mass Network Model. a) Nodes represent distinct brain

regions. b) Within each region, or node of the network, there are interacting

subpopulations of excitatory and inhibitory cells, in accord with the standard

Wilson-Cowan model. c) Standard Wilson-Cowan model.

[23] (grey scale handwritten images of size 28× 28), Fashion-MNIST dataset [97]

(grey scale Zalando’s article images of size 28×28), CIFAR-10 dataset [51] (colored

images of size 32× 32× 3) and TF-FLOWERS dataset [91] (colored images of size

224× 224× 3). Moreover, we tested our model in combination with a transformer

architecture for classifying text reviews from the IMDB dataset [73].

The remaining sections of this paper are organized as follows. Section 2 details

our Wilson-Cowan model for metapopulation, showing also the possible biological

connections of the computational model. Section 3 presents our methodology for

enforcing stable attractors into the model. The methodology describing how to

train our model for being a learning algorithm is in Section 4, while the experimental

numerical validations on well-known datasets are presented in Section 5. Finally, in

Section 6, we conclude the paper discussing and summarizing the obtained results.
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2. The model

According to graph theory, brain networks can be described as graphs composed

of nodes (vertices) representing neural elements (brain regions) linked by edges

representing physical connections (synapses or axonal projections).

The topological and physical distances between elements in brain networks

are intricate. Neurons and brain regions, containing populations of neurons,

have a higher probability of being connected if they are spatially close, whereas

connections between spatially remote neurons or brain regions are less likely

[11]. This is because longer axonal projections are more expensive in terms of

material and energy costs; indeed, the spatial layout of neurons or brain regions is

economically arranged to minimize axonal volume [12].

Given these biological observations, we propose that there are many interacting

populations, forming a network metapopulation version of the Wilson-Cowan

model. More precisely, we are given a graph G(N , E), where each of the N

vertexes contains a population of neurons, composed by excitatory and inhibitory

subpopulations, and interacts with another set of subpopulations contained into

another vertex of the graph through a link in the set of E . Each node in this

model, therefore, corresponds to a population of neurons, including excitatory and

inhibitory subpopulations, and hence we have a metapopulation model for some

regions of the brain. Such populations can be finite or infinite. In this manuscript,

we assume they are infinite. We will analyze the effect of finite size corrections at

the single population level in future works.

The interactions between vertices are described, according to graph theory

terminology, by an adjacency matrix A of the graph underlying the network. In

general A ∈ RN×N . In this manuscript, an element of a matrix A is defined as

[A]ln. The matrix A, in our case, can be factorized by definition, i.e., A = ΦΛΦ−1,

where Λ is a diagonal matrix Λ ∈ RN×N , composed by the eigenvalues of A, and
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Φ ∈ RN×N is a matrix where each column, i.e., ϕ⃗n = [Φ]:,n, with n = 1, . . . ,N , is

an eigenvector of A. With the symbol (·)−1 we define the inverse matrix operation.

The choice of dealing with the above decomposition of the coupling matrix echoes

the spectral approach to Deep Learning discussed in [17] and reference therein.

As stated before, each i-th vertex in G(N , E) has its own pair of Wilson-Cowan

equations, describing the dynamics of a population of neurons, composed by

subpopulations of excitatory and inhibitory species. Each subpopulation can be

described by a proportion of excitatory and inhibitory neurons firing per unit time

at time t 1. This proportion, in literature, is formalized with letter x for excitatory

neurons and letter y for inhibitory neurons, respectively. Mathematically, the

whole set of exitatory and inhibitory subpopulations can be described by the

vectors x⃗ ∈ RN and y⃗ ∈ RN . In this manuscript, we refer to the i-th component

of a vector v⃗ with [v⃗]i.

For a sake of simplicity, we collect the two species of neurons into a matrix

z ∈ RN×2. Mathematically, we obtain that [z]:,1 = x⃗, [z]:,2 = y⃗, [z]i,: = ([x⃗]i, [y⃗]i).

In vector notation we have: z⃗1 = [z]:,1, z⃗2 = [z]:,2 and ζ⃗i = ([z]i,:)
⊺, where

z⃗1, z⃗2 ∈ RN , while ζ⃗i ∈ R2 and ⊺ signifies the transpose operation.

Thus, the Wilson-Cowan equations of the model that govern the dynamics in

each node of the network read:

d[z⃗1]i(t)

dt
= −αE[z⃗1]i(t) + (1− [z⃗1]i(t))[f⃗E(s⃗E(z⃗1(t), z⃗2(t))]i (1a)

d[z⃗2]i(t)

dt
=

1

γ

(
−αI [z⃗2]i(t) + (1− [z⃗2]i(t))[f⃗I(s⃗I(z⃗1(t), z⃗2(t)))]i

)
(1b)

where i = 1, . . . ,N . Here, 0 ≤ [z⃗1]i(t), [z⃗2]i(t) ≤ 1, i = 1, . . . ,N , with 0

corresponding to a state of quiescence in neuronal activity.

The system also captures the refractory dynamics of both subpopulations,

1In this manuscript, all the variables are dimensionless.
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defined by the pre-factors 1 – [z⃗1]i(t) and 1 – [z⃗2]i(t), tracking the period of time

during which cells are incapable of stimulation following an activation 2. αE,I are

constant rate functions.

The functions f⃗E(·) and f⃗I(·) represent nonlinear activation functions (non linear

firing rate) for excitatory and inhibitory neurons, respectively, acting component-

wise, i.e., [f⃗E,I ]i = f
(1)
E,I + f

(2)
E,I tanh(βE,I [s⃗E,I ]i) where βE,I is the gain parameter.

The quantities f
(1)
E,I and f

(2)
E,I enter the definition of the sigmoidal non linear function

and allow for a swift control of the location of fixed points. The offset f
(1)
E,I sets

in particular the degree of residual activity when [s⃗E,I ]i = 0. These nonlinearities

capture the threshold-like behavior of neurons, i.e., a neuron only fires if its input

exceeds a certain threshold. Obviously, they are functions of the currents s⃗E,I .

We define γ as the ratio between inhibitors and activators in the population of

neurons on a single vertex of the graph. This ratio is conventionally set to 0.25.

This is due to the fact that it is known that in the brain, there are billions of

neurons in the cortex. Among them, scientists have shown that 80% are excitatory,

whereas the remaining 20% are inhibitory [62], depending on whether they have a

prominent postsynaptic density or a very thin postsynaptic density, respectively

[21].

We perform an important modification in the current vectors s⃗E(z⃗1(t), z⃗2(t))

and s⃗I(z⃗1(t), z⃗2(t)) with respect to the standard Wilson-Cowan model. Indeed, in

these functions, we introduce the coupling term between the regions of the brain.

More precisely, the equations for the currents are:

2This term has often been neglected in subsequent considerations of the model, and [78]

showed that it effectively rescales the parameters of the nonlinearities.

8



s⃗E(z⃗1(t), z⃗2(t)) = ωEE z⃗1(t)− ωEI z⃗2(t) + hE e⃗+ ΓAz⃗1(t) (2a)

s⃗I(z⃗1(t), z⃗2(t)) = ωIE z⃗1(t)− ωII z⃗2(t) + hI e⃗ (2b)

where e⃗ ∈ RN is a vector where all components are set to 1, Γ = 1/
√
N is a

scaling factor [61, 40], ωEE, ωII , ωEI , and ωIE denote the strength of connectivity

within and between the excitatory and inhibitory subpopulations. hE and hI denote

the strength of the external input to each of these subpopulations. The ΓAz⃗1(t)

term couples the nodes of the network, and gives the strength of the interactions

between connected nodes [76, 57]. We recall that Az⃗1(t) is a multiplication between

a matrix in RN×N and a vector in RN . It is worth pointing out that inter-node

connections are established between excitatory subpopulations only, as is true of

the brain. Such a term has been introduced in many works, as [2, 77], for analyzing

different dynamics in Wilson-Cowan oscillator networks, including approaches that

use a Laplacian instead of an adjacency matrix. In all these cases, the authors

analyze only the dynamical behaviors, without embedding stable attractors or

applying the resultant dynamics to a learning task. As far as we know, our work

is the first in this direction of research.

The system’s evolution can lead to unique fixed points, multiple fixed points each

with its own basin of attraction, or even result in an oscillating periodic attractor,

depending on the choice of parameters in equations (1) and (2). Throughout this

paper, our primary focus will be on parameter configurations leading to bistability

[4] (Fig. 2 displays a cartoon of the bistable profile for the standard Wilson-Cowan

model). We select the bistabile profile to construct a dictionary for our classification

task. Specifically, we aim to utilize the fixed points of the oscillator as targets for

the dynamics to converge to. We, therefore, select parameters in equation (1) and

(2) to ensure the emergence of precisely two fixed points at every node of the graph

(in the case the coupling term is omitted, i.e., when Γ = 0), as used in [99]. We
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Figure 2: Cartoon of the bistable profile. This figure illustrates a cartoon of

the bistable profile of the standard Wilson-Cowan model we adopt in each node of

the network.

denote these solutions as ζ⃗
(1)

= (x
(1)
, y

(1)
)⊺ and ζ⃗

(2)

= (x
(2)
, y

(2)
)⊺ for each node.

Our objective is to classify K items based on the output of the network G(N , E).

The network which defines the backbone of the examined dynamical model is

made of N nodes, N denoting, for example, the number of pixels of the images

to be classified. Each node is assigned with a standard Wilson-Cowan model.

Nodes are then sensing its nearest neighbours, as stipulated by a linear coupling

term which selectively acts on the excitatory species. The web of inter-nodes

connections is stored in the N × N adjacency weighted matrix (A = ΦΛΦ−1),

whose elements represent the weights to be optimized in the training process. The

above matrix is formulated in spectral domain [58]: a subset of K suitably tailored

eigenvectors is assigned to its kernel and define the attractive poles for the globally

coupled dynamics. The eigenvalues populate a specific region of the real axis that

yields stability of the crafted attractors, as dictated by the linear stability analysis

presented in the next section. In essence the model to be trained is an extended

collection of interacting units subject to contrasting tendencies: local reactions

occur between subpopulations referred to a single brain region (or node), while
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global, spatially (across nodes) extended, interactions make the system to evolve

towards complex heterogeneous stable states. In summary, the item to be classified

is supplied as an initial condition of the dynamical model and the ensuing stable

attractor, as reached by the trained model, flags for the corresponding classification

label. Under this perspective, learning amounts to shaping the basin of attraction

of the underlying dynamical model.

Having in mind that, we encode K attractors within the matrix Φ, representing

distinct system configurations that it may evolve towards over time. We specify

K columns of Φ, thus ϕ⃗k for k = 1, . . . , K. By design, these column vectors are

chosen permutations of the fixed points identified in the dynamics described by

equation (1), such that each element of ϕ⃗k corresponds to either [⃗ζ
(1)

]1 or [⃗ζ
(2)

]1,

namely [ϕ⃗k]i = {[⃗ζ
(1)

]1 or [⃗ζ
(2)

]1} ∀i = 1, . . . ,N (see Fig. 4, Panel b) and c)).

Furthermore, we align only the eigenvectors ϕ⃗k, k = 1, . . . , K, within the kernel of

A, highlighting that these vectors, as elements of the kernel, can be constructed

from linear combinations of the kernel’s orthonormal vectors.

In conclusion, Aϕ⃗k = λkϕ⃗k = 0⃗. Thus, each eigenvalue λk associated to

a ϕ⃗k (k = 1, . . . , K) in Λ is set to zero. To streamline our approach without

sacrificing generality, we choose the system parameters so that [⃗ζ
(1)

]2 = [⃗ζ
(2)

]2.

Although [⃗ζ
(1)

]2 represents a degree of freedom within the system dynamics, it

lacks informational value for our classification task. Consequently, we refrain from

adding an eigenvector composed exclusively of [⃗ζ
(2)

]2 values to A.

The embedded eigenvectors must be stable. To ensure this, we perform a linear

stability analysis [88] to identify the conditions that the non-zero eigenvalues in Λ

must satisfy in order to make ϕ⃗k (k = 1, . . . , K) stable attractors.
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3. Enforcing Linear Stability

Our aim is to enforce stability on the K planted attractors in A. To be stable

a stationary state must be such that under a small perturbation, the dynamics

of the system returns on it. For this reason, we consider the system of real first

order differential equations dz/dt = G(z), where G : RN×2 → RN×2 identifies the

functional components in equation (1), thus the i-th row of G(z) is, in matrix

notation dζ⃗i/dt = ([G(z)]i,:)
⊺, equal to equation (1). At the steady state dζ⃗i/dt = 0,

for all i = 1, . . . ,N . Hence, G(z∗) = 0.

For analyzing the stability of fixed points in the stationary state, i.e., z∗, we

examine the behaviour of orbits near it.

Thus, we assume that z(t) = z∗ + δz(t), where δz(t) is a small perturbation

close to z∗. Substituting into dz/dt = G(z), we can expand G(z) to first order in

δz(t), obtaining:

G(z∗ + δz(t)) = G(z∗) + J(z∗) · δz(t) +O(δz2(t)). (3)

The tensor J(z∗), which denotes the Jacobian, can be easily computed. Indeed,

by definition of Jacobian:

J(z) =



d[G(z)]⊺1,:

dζ⃗1

d[G(z)]⊺1,:

dζ⃗2
. . .

d[G(z)]⊺1,:

dζ⃗N
d[G(z)]⊺2,:

dζ⃗1

d[G(z)]⊺2,:

dζ⃗2
. . .

d[G(z)]⊺2,:

dζ⃗N
...

...
...

...
d[G(z)]⊺N ,:

dζ⃗1

d[G(z)]⊺N ,:

dζ⃗2
. . .

d[G(z)]⊺N ,:

dζ⃗N

 . (4)

Making the whole calculation together, we obtain the following equation for

the time dependence of the perturbation of z from the steady state:

dδz(t)

dt
= J(z∗) · δz+O(δz2). (5)

The linearized stability problem is obtained by neglecting terms of second order in

δz.
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The Jacobian is in R(N×2)×(N×2). From (5), we can make it diagonal. In such a

situation, we can compute only a single component of the diagonal for computing

the whole Jacobian. Mathematically, each component of the diagonalized Jacobian

is a matrix 2× 2 of components:

[J]ii(z) =

J[ζ⃗i]1[ζ⃗i]1 J[ζ⃗i]1[ζ⃗i]2

J[ζ⃗i]2[ζ⃗i]1 J[ζ⃗i]2[ζ⃗i]2

 , (6)

where [[J]ii(z)]el, with e, l = 1, 2, defines the derivatives with respect to species

e on the expression of the species l on the dynamics of our model (1) on vertex i.

To solve (5) (neglecting O(δz2)), we solve dδζ⃗i(t)/dt = [J]ii(z
∗) · δζ⃗i on a single

vertex i of the network. We recall that the last equation has been obtained by ob-

serving that δζ⃗i = [δz]i,:. Thus, by seeking a solution of the form δζ⃗i(t) = χ⃗i exp(st)

with χ⃗i ∈ R2, the problem becomes a simple eigenvalue problem: [J]ii(z
∗)χ⃗i = sχ⃗i

which has nontrivial solutions for values of s satisfying the second order polynomial

equation D(s) = det([J]ii(z
∗)− sI) = 0, where I denotes a 2× 2 identity matrix.

To look for asymptotic stability, it suffices to consider two roots of D(s) = 0,

i.e. s(+) and s(−). At each root is associated an eigenvector χ⃗
(±)
i . Any time

evolution can be represented as δζ⃗i(t) = c+χ⃗
(+)
i exp

(
s(+)t

)
+ c−χ⃗

(−)
i exp

(
s(−)t

)
,

where c± are constant coefficients that can be determined by the initial condition

δζ⃗i(0) = c+χ⃗
(+)
i + c−χ⃗

(−)
i .

Given that the coefficients of the characteristic polynomial D(s) are real, we

expect that the eigenvalues s(±) to be real or appear in complex conjugate pairs.

By definition of stability, the real part of the eigenvalues s(±) must be negative.

This implies that when solved the following expression:

s(±) =
Tr([J]ii(z

∗))±
√

Tr([J]ii(z∗))2 − 4det([J]ii(z∗))

2
, (7)

the maximum value between the two real part of (7), i.e., max{Re(s(+)),Re(s(−))},
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must be taken. If such a value is negative, then the associated fixed point is asymp-

totically stable [88].

To be explicit, the elements of [J]ii(⃗z
∗) have the following expressions:

J[ζ⃗i]1[ζ⃗i]1 = −αE − [f⃗E(s⃗E([z
∗]:,1, [z

∗]:,2))]i + (1− [ζ⃗i]1)[f⃗
′
E(s⃗E([z

∗]:,1, [z
∗]:,2))]i(ωEE + Γλi)

(8a)

J[ζ⃗i]1[ζ⃗i]2 = (1− [ζ⃗i]1)[f⃗
′
E(s⃗E([z

∗]:,1, [z
∗]:,2))]i(−ωEI) (8b)

J[ζ⃗i]2[ζ⃗i]1 =
1

γ

(
(1− [ζ⃗i]2)[f⃗

′
I(s⃗I([z

∗]:,1, [z
∗]:,2))]i(ωIE)

)
(8c)

J[ζ⃗i]2[ζ⃗i]2 =
1

γ

(
−αI − [f⃗I(s⃗I([z

∗]:,1, [z
∗]:,2))]i + (1− [ζ⃗i]2)[f⃗

′
I(s⃗I([z

∗]:,1, [z
∗]:,2))]i(−ωII)

)
,

(8d)

where ⃗f
′
E/I are the derivatives with respect to the species E/I. λi is the

eigenvalue of the matrix A, associated to the i−th vertex. The eigenvalue problem,

the one associated to the stability problem, now contains the parameter λi, and

equation (7) becomes parametric. In such a situation, we can compute the entire

region of stability, and know exactly what kind of values the parameter λi must

take so that the stationary points are stable. In Fig. 3, we show the maximum

value of the real part of the eigenvalues s(±) as a function of λi, on a single vertex

i. In this case, the plot shows that the stationary points are stable as soon as

the maximum value of the real part of the eigenvalues s(±) is negative. Through

this method, we have identified the regions of λi that ensure the stability of our

stationary state, thereby securing our planted attractors.

4. Training

Obtained the stability criteria for our attractors, we can construct a statistical

learning model for our classification task. In such a statistical learning model only
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Figure 3: Stability before training. The figure shows the maximum value of the

real part of the eigenvalues s(±) as a function of the parameter λi. The two curves,

with different colors, identify respectively the two different steady states. The

parameters here employed read ωII = 1, ωIE = 0.0, ωEI = 2, ωEE = 7.2 αE = 1.5,

αI = 0.4, hE = −1.2, hI = 0.1, γ = 0.25, βE = 3.7, f
(1)
E = 0.25, f

(2)
E = 0.65, βI = 1,

f
(1)
I = 0.5, f

(2)
I = 0.5, N = 784.
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the components of the matrix Φ, which are not the embedded eigenvectors, the

non-zero eigenvalues in Λ, and the γ parameter can be learned. In other words, the

matrix Φ should be regarded as a matrix where the first K columns, identifying

the embedded attractors of the system’s dynamics, are not to be learned, just as

the first K eigenvalues of the matrix Λ, which are fixed to be zero by construction.

This approach ensures that the planted attractors guide the dynamics, letting the

system to converge on selected attractors once the training has been completed.

As an initial condition for the non-embedded eigenvectors, we opt for orthogonal

random eigenvectors [5]. As an initial condition for γ we opt for a value equal

to 0.25 (as described in Section 2), while for the trainable eigenvalues we opt to

initialize them with a normal distribution with mean equal to −
√
N and variance

equal to 1. The condition on the trainable eigenvalues satisfies completely the

initial stability condition (see Fig. 3). Without loss of generality, we fix the non

trainable parameters of the model, as described in the caption of Fig. 3 and used

in [99].

Moving onto the model training, the parameter space for optimization resides

in R(N−K)(N+1)+1, where K, we recall, denotes the number of classes in our

classification problem, and the singular dimension relates to the parameter γ.

In practice, we are in a supervised learning setting. Therefore, we have a

dataset D = (z, T⃗ )(j)∈[1,...,|D|] of size |D|, where z(j) is an input datum, and T⃗ (j)

represents the associated target. For simplicity, the input datum is understood

to be z(j) ∈ RN×2. K distinct and mutually different targets are mapped as

attractors of the dynamics. In other words, the target associated to the first class

of items is the first eigenvector ϕ⃗1 of matrix A, the target associated to the second

class of items is the second eigenvector ϕ⃗2, and so on. We recall that the first K

eigenvectors of A have been planted with a particular structure, as described in

Section 2.
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For example, the MNIST dataset is composed of a set of 70000 handwritten

digit images of size 28× 28, ranging from 0 to 9, with associated labels for each

digit. A label is just a number from 0 to 9, thus indicating the number of classes

for the classification task is K = 10. By denoting the j-th image of such dataset as

r⃗(j) ∈ R784, and its associated label with T ′(j), the j-th input element (our initial

condition) of our dataset D will be built as z(j) = (z⃗
(j)
1 = r⃗(j), z⃗

(j)
2 = r⃗(j)), with

the associated target given by T⃗ (j) = ϕ⃗T ′(j) . Therefore, the j-th element of our

dataset will be (z, T⃗ )(j), where z ∈ RN×2, T⃗ ∈ RN , and N = 784. The cardinality

of D will be |D| = 70000. This dataset is then split into a training and a test set

of size |Dtrain| = 60000 and |Dtest| = 10000, respectively. Each node of the graph

is associated with a pixel of an image that must be classified. The image evolves

over time and reaches an asymptotically stable state corresponding to the one we

initially planted. A figurative example of how the dataset is constructed and how

stable attractors are planted is presented in Fig. 4.

By construction, the data are sampled i.i.d. from their unknown joint distribu-

tion P(z, T⃗ ).

The objective of the training is to estimate the values of the model’s weights

in such a way that it is able to achieve its goal. This estimations is reached by the

minimization of a loss function. We define the loss function as:

L =
1

|D|

|D|∑
j=1

(z⃗
(j)
1 (T )− T⃗ (j))⊺(z⃗

(j)
1 (T )− T⃗ (j)), (9)

where T is a sufficiently large time, ensuring that a stationary state of the dynamical

system is reached. The reader should note that in (9), only the excitatory species

is explicitly written. However, the inhibitory species is implicitly factored into the

loss function through its contribution to the excitatory term, i.e., equation (1).

The input datum z(j) represents, for our dynamical system defined in (1), an

initial condition of the dynamics, i.e., z(j)(t = 0). From such initial condition,

we evolve the dynamical system for a sufficiently large time T . The evolution is
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Figure 4: Building the model. The figure illustrates the composition of the

dataset and the method for introducing stable attractors into the dynamics. Panel

a) displays the labels, images, and targets used in our model. The first row shows

the labels of the MNIST image (N = 784) examples found in the second row. The

third row presents the ten target images we created to serve as attractors for the

dynamics. Panel b) shows the creation of an eigenvector of matrix A. The image

is composed solely of the excitatory stationary parts of the two fixed points in the

Wilson-Cowan model. Each black pixel corresponds to a x(1), while each white

pixel corresponds to a x(2). In general, to create K target vectors for a dataset,

we generate K vectors of size N , where N
K+2

components are set to x(1) and the

remaining components to x(2). Each unique target vector is constructed by setting

the components from k N
K+2

to ((k + 1) N
K+2

)− 1 to x(1), with all other components

set to x(2), with k = 0, . . . , K− 1 that identifies the label of a single class. Panel c)

illustrates the positions of the fixed eigenvectors and eigenvalues (in red) and the

trainable ones (in green). Recall that the matrix A is diagonalizable by definition.
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performed using Euler’s algorithm, discretizing time into steps of ∆t = 0.1, unless

explicitly specified otherwise. At each iteration, denoted with the index n, the

system’s state z
(j)
n is updated according to the equation: z

(j)
n+1 = z

(j)
n +G(z

(j)
n )∆t,

where G(z(j)) is the system’s flux, defined in (1). The total number of iterations,

nmax, is determined a priori based on the desired simulation time T and the chosen

time step ∆t through the relation nmax = ⌊ T
∆t
⌋. This approach allowed us to

efficiently simulate the system’s long-term behavior by iteratively applying Euler’s

update rule. Once the system reaches the final iteration, we use the value of the

solution to optimize the loss function.

To minimize the loss function in (9), we specifically employ Accelerated Stochas-

tic Gradient Descent using the Adam optimizer [46], with a learning rate of 0.1,

unless explicitly specified otherwise. The learning rate, the number of epochs

needed to achieve optimal minimization of the loss function, the mini-batch size

used in the Adam algorithm, and the time T required to reach the stationary state

have been optimized empirically (see Appendix A).

Once the training procedure terminates, we have a classifier governed by a

metapopulation of excitatory and inhibitory subpopulations. A sketch of the

dynamics is presented in Fig. 5.

Quantifying the effectiveness of the Wilson-Cowan model for metapopulation

as a learning algorithm requires a well-defined performance metric. We choose

to directly compare the generated output images with their corresponding target

counterparts.

To do this, we compare the output image with all K distinct and mutually

different targets. This comparison yields a vector with K components, where each

component represents the normalized L2 distance between the output image and
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Figure 5: Dynamics of the model. The figure illustrates a schematic represen-

tation of our Neural Mass Network Model. Panel a) displays an image from the

MNIST (N = 784) dataset along with its associated target. The image features a

black pixel with a red border, which we track throughout its dynamics. Panel b)

shows this dynamic process. The equations are highlighted in red to emphasize

that we are focusing on that single pixel. This pixel is depicted as a red sphere

moving within a double well potential. Our model, we recall, is configured to

exhibit a bistable profile. Initially, the vector ζ⃗i is set to represent the black

pixel for both subpopulations of neurons. As the dynamics evolve according to

our model’s equations, the pixel explores the bistable profile. It does not stop

at the closest minimum; instead, it reaches the correct minimum designated for

classification, thanks to the learned coupling in the matrix A. Panel c) illustrates

the overall dynamics of the entire image. Starting from an initial condition—the

image we want to classify—the system uses the equations in (1) to achieve the

final state, which is our stable attractor. The precision cutoff for this analysis has

been set to the seventh decimal digit.
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the k-th target image, with k = 1, . . . , K. Mathematically, we have:

m⃗
(j)
f =



∑N
i=1[(z⃗

(j)
1 (T )−T⃗ (1))]2i√∑N

i=1[(z⃗
(j)
1 (T )]2i

∑N
i=1[T⃗ (1))]2i∑N

i=1[(z⃗
(j)
1 (T )−T⃗ (2))]2i√∑N

i=1[(z⃗
(j)
1 (T )]2i

∑N
i=1[T⃗ (2))]2i

...∑N
i=1[(z⃗

(j)
1 (T )−T⃗ (K))]2i√∑N

i=1[(z⃗
(j)
1 (T )]2i

∑N
i=1[T⃗ (K))]2i


. (10)

Since the normalized L2 distance between two close images is close to zero, we

take the inverse of this value 3. In other words, we use the inverse of (m⃗
(j)
f ). By

normalizing the new vector (m⃗
(j)
f )−1 to 1 and applying the arg max on it, we can

define the accuracy (ψ) as:

ψ =
1

|Dtest|

|Dtest|∑
j=1

δ(argmax
(
q⃗(j)

)
), (11)

where |Dtest| is the cardinality of the test set, [q⃗(j)]l =
[(m⃗

(j)
f )−1]l∑K

i=1[(m⃗
(j)
f )−1]i

and

δ(argmax
(
q⃗(j)

)
) =

1 if argmax
(
q⃗(j)

)
= T ′(j)

0 otherwise

. (12)

δ(argmax
(
q⃗(j)

)
) is, therefore, a binary random variable that allows us to

estimate the probability of success of our algorithm.

The computational complexity of our model, after the training process is

complete, is quantified asO(N 2), resulting from simple matrix-vector multiplication

during the integration of the dynamics, where N represents the size of the input.

3The reader should note that the planted attractors are asymptotically stable, which means

that an infinite amount of time is required to reach the attractor exactly. In this situation, the

difference between the target and the output image of our Neural Mass Network Model, at finite

time, will be numerically very small. By taking the inverse of the normalized square difference,

we obtain an indicator for the argument to consider.
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5. Experimental Validations

This section presents the results obtained from our analysis. To facilitate

understanding, we divide the analysis into two subsections:

• Training from Scratch: The first subsection examines the performance of

classifying images on the MNIST and Fashion MNIST test sets when the

Neural Mass Network Model is trained from scratch. For details on these

datasets, see Appendix A.1.

• Model Fine-Tuning with Pre-Trained Weights : The second subsection explores

the test set performance of a Wilson-Cowan model for metapopulation

in combination with convolutional neural networks [54] or a Pre-Trained

Transformer [92]. In the first case we will analyse the performance of the

combination across MNIST, Fashion-MNIST, CIFAR10, and TF-FLOWERS.

While in the second case, we perform a classification for the sentiment

analysis, i.e. IMDB dataset [73]. For details on these datasets, see Appendix

A.

5.1. Training from Scratch

Our initial analysis focuses on the stability of the system for classifying images of

the MNIST and Fashion MNIST datasets. According to the stability requirements

established in Section 3, the eigenvalues of the Jacobian matrix must have negative

real parts to ensure asymptotic stability at the embedded attractors. Top panel

of Fig. 6 visually displays the region where the eigenvalues of matrix A allow to

satisfy this property.

A critical distinction between the top panel of Fig. 6 and Fig. 3 lies in the

value of the parameter γ, which plays a key role in governing the time scales

within the standard Wilson-Cowan model. While traditionally it is set to 0.25,

our work explores the impact of optimizing γ during the training process. In
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Figure 6: Stability after training. Top panel: The figure shows the maximum

value of the real part of the eigenvalues s(±) as a function of the parameter λi.

The two curves, with different colors, identify respectively the two different steady

states. Bottom panel: The figure shows the histogram of eigenvalues of matrix

A, trained on MNIST dataset. All of them satisfy the stability conditions. The

parameters here employed read ωII = 1, ωIE = 0.0, ωEI = 2, ωEE = 7.2, αE = 1.5,

αI = 0.4, hE = −1.2, hI = 0.1, γ = 0.85, βE = 3.7, f
(1)
E = 0.25, f

(2)
E = 0.65, βI = 1,

f
(1)
I = 0.5, f

(2)
I = 0.5, N = 784.
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Fig. 3, γ begins with its typical value of 0.25. As stated before, a population

in each vertex is composed by 80% of excitatory and 20% inhibitory neurons.

However, during training, it undergoes optimization and converges to an optimal

value of 0.839 ± 0.031 for the MNIST dataset ( for Fashion MNIST results see

Tab. 1). In this case, we have that a population in a vertex is composed by

54% of excitatory and 46% inhibitory neurons. These values suggest that, for

our particular Neural Mass Network Model, a mixed population offers significant

advantages for classification. However, we are working with a coarse-grained model

of metapopulation comprising excitatory and inhibitory subpopulations. As a

result, discrepancies with a real brain may occur. In fact, besides the discrepancy

in the ratio between inhibitory and excitatory subpopulations at a single vertex,

the topological structure of the learned graph also does not follow assortative

modularity, where nodes connect densely within their own community and sparsely

to nodes outside their community. Instead, we obtain a fully connected weighted

graph. In contrast to this topological structure, we observe that our adjecency

matrix A remains asymmetric throughout all the analyses performed in this

manuscript. Indeed, asymmetries in predicted communication efficiency reflect

neurobiological concepts of functional hierarchy and correlate with directionality

in resting-state effective connectivity, as analyzed using spectral dynamic causal

modeling [74]. Moreover, a principle of brain organization is that reciprocal

connections between cortical areas are functionally asymmetric [31].

The bottom panel of Fig. 6 illustrates the distribution of the final eigenvalues of

A for the MNIST dataset. As evident from the figure, all eigenvalues reside within

the designated region satisfying the imposed stability constraint. By combining

the findings from both panels of Fig. 6, we conclude that the investigated system

adheres to the stability requirements established in Section 3.

Having analyzed the distribution of eigenvalues and confirmed the stability
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γ(σγ)

MNIST 0.839(31)

Fashion MNIST 0.922(35)

Table 1: Results of γ over five different training runs for the MNIST and Fashion MNIST

datasets (N = 784). The numbers in parentheses represent the standard deviation of the mean

and they refer to the last digits. Number of epochs for each single realization was set to 525,

with batch-size equal to 200 for MNIST, while was set to 350, with batch-size equal to 200, for

FASHION-MNIST.

of the attractors in our Wilson-Cowan model for metapopulation, we can now

delve into how this stability affects the model’s dynamic behavior. Fig. 7 presents

visualizations of this connection.

This figure, containing two panels, visualizes the temporal evolution of the

degrees of freedom for both excitatory and inhibitory species in our system. As

previously established, our model is governed by a system of continuous ordinary

differential equations in both time and space, i.e., equation (1). The top and

bottom panels depict the dynamics of all 784 degrees of freedom associated with

the excitatory and inhibitory species, respectively. Notably, the model rapidly

converges to its steady state within a short timeframe of just t = 2.5. While the

inhibitory species exhibits slightly slower dynamics (bottom panel), this delay does

not significantly impact the convergence of the excitatory species towards their

steady state. In fact, after t = 1.5 units, the excitatory population’s dynamics

become fully dominated by the stable attractors, indicating their rapid approach

to a steady state.

At this point, we can assess the classification performance of our biologically

inspired learning algorithm on the MNIST dataset. Utilizing the metric defined in

equation (11), we achieve, on averaged, an accuracy of ψ = 98.13% (with the best

performance at ψbest = 98.16%). Comparing to a multilayer perceptron (MLP)
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Figure 7: Dynamics after training. Top panel: Evolution of all pixels from an

MNIST image under the excitatory species dynamics. Bottom panel: Evolution

of the same pixels from the same MNIST image under the inhibitory species

dynamics. The parameters here employed read ωII = 1, ωIE = 0.0, ωEI = 2,

ωEE = 7.2, αE = 1.5, αI = 0.4, hE = −1.2, hI = 0.1, γ = 0.85, βE = 3.7,

f
(1)
E = 0.25, f

(2)
E = 0.65, βI = 1, f

(1)
I = 0.5, f

(2)
I = 0.5, N = 784.
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Figure 8: Cartoon of invertible property. This figure illustrates the forward

and backward dynamics of our Wilson-Cowan model for metapopulation through

a cartoon representation. The algorithm takes an image as input, accurately

classifies it, and subsequently reconstructs the original image entirely based on

the final state of the forward dynamics. The parameters here employed read

ωII = 1, ωIE = 0.0, ωEI = 2, ωEE = 7.2, αE = 1.5, αI = 0.4, hE = −1.2, hI = 0.1,

γ = 0.85, βE = 3.7, f
(1)
E = 0.25, f

(2)
E = 0.65, βI = 1, f

(1)
I = 0.5, f

(2)
I = 0.5, T = 3.5,

∆t = 0.0001, N = 784.
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(with one hidden tanh layer with 764 neurons, one output softmax layer with

10 neurons, and with a cross entropy loss function), our algorithm exhibits an

accuracy only marginally lower (0.13% difference against the best performance).

All the results, also for the Fashion MNIST dataset, are presented in Tab. 2.

ψ(σψ) ψMLP (σψMLP )

MNIST 0.9813(3) 0.9829(13)

Fashion MNIST 0.8839(19) 0.8955(30)

Table 2: Results of accuracy of our model (first column) and accuracy of MLP (second column),

over five different training runs for the MNIST and Fashion MNIST datasets (N = 784). The

numbers in parentheses represent the standard deviation of the mean and they refer to the last

digits. Number of epochs for each single realization was set to 525, with batch-size equal to 200

for MNIST, while was set to 350, with batch-size equal to 200, for FASHION-MNIST.

To compare our method with other approaches in the current literature, we

reviewed studies on the MNIST and Fashion-MNIST datasets that utilized various

techniques with attractors in their dynamics, as in Hopfield networks that are

Recurrent Neural Networks and biological inspired. However, these methods, at

best, achieved performance metrics below 70% for the MNIST dataset[8, 53], and

63% for the Fashion-MNIST dataset [30]. Even with a supervised approach that

transforms Hebb’s rule into a genuine learning rule, the accuracy only reached 94%

for MNIST and 84% for Fashion-MNIST [3].

Additionally, we compared our results with those obtained by Krotov and

Hopfield in their work [52]. In this study, the authors demonstrated that the

Hopfield network can be modified by using a non-linear (e.g., polynomial) function

in the Hamiltonian, allowing it to store a polynomial number of memories, rather

than just a linear one. These memories are stable attractors of the discrete

dynamics. Furthermore, the authors showed that these modified networks, known

as Dense Associative Memory (DAM) networks, can also function as classifiers
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when a continuous non-linear function is applied in the asynchronous dynamics

and a stochastic gradient descent is used to optimize the weights.

For instance, DAMs achieve a test error of 1.6% on the MNIST dataset, while

our Wilson-Cowan model for metapopulation achieves a test error of 1.9%. In

other words, our model performs on par with DAMs.

This model also offers a simple invertible property. By employing a straightfor-

ward transformation, τ = T − t [60], which effectively reverses the dynamics of

the system, we can integrate the dynamics backwards, starting from the terminal

position of the forward dynamics, and rebuild the initial condition from which we

started with. The modified evolutionary law for this backward integration becomes

ż = −G(z), with the temporal derivative now taken concerning the variable τ . A

simple cartoon is presented in Fig. 8.

Our analysis was performed on simple grayscale image datasets of size 28× 28.

Such an analysis is computationally fast, as showed in Appendix D for different

image sizes. We performed also ablation experiments on our model, and such

experiments are presented in Appendix E. However, testing colored images, such as

those in the CIFAR-10 and TF-FLOWERS datasets, which have sizes 32× 32× 3

and 224 × 224 × 3 respectively, can be time-consuming due to the increased

dimensionality of these images. To avoid such bottlenecks, we test our model with

CNNs, which are biologically inspired. Additionally, we investigate whether the

well-known concept of transfer learning [38] can be applied to our model. These

analyses are presented in the following subsection.

5.2. Model Fine-Tuning with Pre-Trained Weights

In this section, we present experimental validation of our Neural Mass Network

Model in combination with CNNs and Transformers.
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5.2.1. Wilson-Cowan model for metapopulation in combination with a Convolu-

tional Neural Network

Computational models validate intuitions about how a system works by pro-

viding a way to test those intuitions directly. They offer a means to explore

new hypotheses in an ideal experiment. CNNs are an example. They came from

pioneering research in neuroscience, which gave insights into the nature of visual

processing in mammals including humans. In such a pioneering research, [41]

discovered two major cell types in the primary visual cortex (V1) of cats (see Fig.

9, Panel b)). The first type, the simple cells, respond to bars of light or dark when

placed at specific spatial locations. The second type, complex cells, have less strict

response profiles. These complex cells are likely receiving input from several simple

cells, all with the same preferred orientation but with slightly different preferred

locations. From such observations, Fukushima developed the Neocognitron [32],

a precursor to modern CNN. This computational model contains two main cell

types: the S-cells and the C-cells. The S-cells are named after simple cells and

replicate their basic features on a plane, as well as the C-cells (named after complex

cells) that are nonlinear function of several S-cells coming from the same plane

but at different locations. After a plane of simple and complex cells representing

the basic computations of V1, the Neocognitron simply repeats the process again.

From these ideas, finally CNNs arose. A CNN is a type of deep learning model

[54] specifically designed for processing structured grid data, like images. CNNs

automatically and adaptively learn spatial hierarchies of features from input images

through convolutional layers, pooling layers, and fully connected layers. For more

on architectures and applications of CNNs, we suggest the reviews [55, 100].

CNNs can mimic and simulate the representation of visual information along

the ventral stream (see Fig. 9, Panel a)). In particular, the activity of the

artificial units of CNNs predicts the activity of real neurons in animals, with
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very high accuracy. For example, in [98] the authors showed the existence of a

strong correlation between a biologically plausible hierarchical neural network

model’s categorization performance and its ability to predict individual inferior

temporal (IT) neural unit response data. Furthermore, the activity of units from

the last layer of the network best predicted IT activity and the penultimate layer

best predicted V4, in visual cortex. Many other works have been developed in

this direction, demonstrating that several deep CNN architectures exhibit similar

performance to human and monkey object classification [55, 79].

Merging, therefore, a CNN with our Wilson-Cowan model for metapopulation

seems reasonable. Indeed, both models appear to be biologically inspired and,

when validated separately, address some aspects of brain function.

Such a new model could, in principle, retain all the validated aspects of a visual

system provided by the CNN part and then, at the end of the ventral cortical

visual system (i.e., the IT), incorporate a recurrent network—our Wilson-Cowan

model for metapopulation—that contains some long-term memories, which we

define as our planted attractors. The IT region, indeed, is a brain region where

visual perception meets memory and imagery [68]. Long-term memory refers to

the brain’s process of taking information from short-term memory and creating

long-lasting memories [85]. These memories are stable and easily accessible, like our

planted attractors. Moreover, long-term memories can include information related

to activities learned through practice and repetition, similar to how a learning

algorithm operates. However, validating such a computational model is extremely

challenging. We must begin, therefore, with the initial steps of implementing the

model and analyzing its performance on various visual classification tasks. We

defer in-depth analyses for validating the model with neurobiological data to future

publications.

We begin by analyzing the MNIST and Fashion MNIST datasets to determine
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Figure 9: Description of biological and artificial object recognition. The

figure illustrates a schematic representation of how object recognition and classifi-

cation, in the brain and artificially, should work. Panel a) simply describes the

position of the visual cortex (see Appendix C). Panel b) shows the relationship

between components of the visual system (Biological) and the base operations

of a CNN (Artificial). Biological: cartoon of simple cells (blue) and complex

cells (green) [41]. Simple cells have preferred location in the image (dashed ovals).

Complex cells receive input from many simple cells and thus have more spatially

invariant responses. Artificial: the first convolutional layer (blue) is produced

by applying a small filter (square box) to every location in the image. Such

operation creates a collection of feature maps. For each feature map, for example,

the maximal activation in the square blue box can be taken. Such an operation

downsamples the image and leads to a complex cell-like plane (green). Panel c)

illustrates a sketch of the CNN model that we use. It has a series of convolutional

and pooling layers. It terminates with a set of dense layers that are connected

to a Wilson-Cowan model for metapopulation (N = 784). Given an input, the

CNN feeds forward through all its layers to arrive at our model, which iteratively

converges to the planted stationary state.
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if adding a CNN in front of our Wilson-Cowan model for metapopulation can

improve classification accuracy. The architectures and training hyperparameters

used are detailed in Appendix A.1. The results are presented in Table 3.

ψ(σψ) SOTA

MNIST 0.9931(8) 0.9987a

Fashion MNIST 0.9135(16) 0.9691b

CIFAR10 0.8659(21) 0.9950c

TF-FLOWERS 0.8485(37) 0.98d

a [13]

b [90]

c SOTA obtained by using transformer architecture [27]. The

best VGG-16 [86] has an accuracy of 0.93[34].

d SOTA obtained by using transformer architecture[47].

Table 3: Results of accuracy of our model (first column) and state-of-the-art (SOTA) (second

column), over five different training runs for the MNIST, Fashion MNIST, CIFAR10 and TF-

FLOWERS datasets. The numbers in parentheses represent the standard deviation of the mean

and they refer to the last digits.

As the reader can see, the results obtained by our simple CNN combined

with our Wilson-Cowan model for metapopulation are satisfactory. Indeed, for

the MNIST dataset, our new model seems to be close to the state-of-the-art,

differing by only 0.5%, on average. However, for the Fashion MNIST dataset, the

discrepancy increases to 5%, on average, compared to the state-of-the-art.

For both datasets, the γ parameter appears to remain close to the accepted

values for a biological model (see Tab. 4). Indeed, the populations of excitatory

neurons in all cortical areas should be around 70− 80% [21], so our optimal values

fell within the right range for the ratio between inhibitory and excitatory neurons.

We then decided to implement a VGG-16 architecture (see Appendix A.2)

for classifying the CIFAR-10 dataset. In this case, we observed that the accuracy

obtained is on average ψ = 86.59% (with the best performance at ψbest = 86.83%),
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γ(σγ)

MNIST 0.330(34)

Fashion MNIST 0.252(8)

CIFAR10 0.247(1)

TF-FLOWERS 0.25(0)

Table 4: Results of γ over five different training runs for the MNIST, Fashion MNIST, CIFAR10

and TF-FLOWERS datasets. The numbers in parentheses represent the standard deviation of

the mean and they refer to the last digits.

thanks to the deep convolutional architecture used. Although our model lacks

specific dropout and batch normalization layers, and data augmentation techniques

that are typically used in the best VGG-16 implementations, our performance

remains reasonably high compared to many other CNN architectures. For further

comparison, the reader shall refer to the performance benchmarks available at this

link 4.

For the last analysis, we chose to check if transfer learning still works with

our model. In general, transfer learning can be used to improve performance on a

task A for which training data is in short supply by using data from a related task

B, for which data is more plentiful. The two tasks should have the same kind of

inputs, and there should be some commonality between the tasks so that low-level

features, or internal representations, learned from task B will be useful for task A.

When data for task A is very scarce, we might simply retrain the final layer of the

network. In contrast, if there are more data points, it is feasible to retrain several

layers. This process of learning parameters using one task that are then applied to

one or more other tasks is called pre-training [10].

We, therefore, confined ourselves to work with a small dataset, TF-FLOWERS

4https://paperswithcode.com/sota/image-classification-on-cifar-10
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Figure 10: Description of TF-FLOWERS dataset. The figure illustrates

the composition of TF-FLOWERS dataset. The first row shows the labels of the

examples found in the second and the third row. The fourth row presents the five

target images we created to serve as attractors for the dynamics (N = 784).
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(see reftfflowers for details). This dataset is composed of 3670 colored 224×224×3

images of flowers, categorized into K = 5 distinct classes: daisy, dandelion, roses,

sunflowers, and tulips. An example of such images is presented in Fig. 10. It is our

task A, and as the reader can see, the dataset is scarce in the number of images,

but not in the details of each image. We, therefore, decided to use the VGG16

model trained on the IMAGENET dataset5 (task B) for transfer learning, and then

train just the last layers, as well as our Wilson-Cowan model for metapopulation

(see Appendix A.4).

The performance of this algorithm, as described in Table 3, reaches on average

84.85% (with the best performance at ψbest = 85.28%). This demonstrates that

transfer learning is effective, as expected, when combining a pre-trained CNN

with our Wilson-Cowan model for metapopulation. However, the high number of

parameters reduces the biological plausibility of the model. Indeed, the parameter γ

can be considered a free parameter that does not significantly affect the algorithm’s

performance, if chosen reasonably.

5.2.2. Wilson-Cowan model for metapopulation in combination with a Pre-Trained

Transformer

We have previously observed that the use of CNNs significantly enhances the

accuracy of models. These networks draw inspiration from biological systems and

exhibit remarkable similarities to specific regions of the human brain. Recently,

CNNs have also been employed to describe and understand how emotional patterns

are integrated into the human visual system [49]. However, CNNs fall short in

5The IMAGENET dataset [22] comprises 14 million natural images each of which has been

hand labelled into one of nearly 22000 categories. A subset of images comprising 1000 non-

overlapping categories is often used for pre-training models in deep learning. The fact to have so

many categories made the problem much more challenging because, if the classes were distributed

uniformly, random guessing would have an error rate of 99.9%.
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replicating another fundamental capability of the human brain: the comprehension

and production of language.

Human language processing is one of the most fascinating capabilities of our

brain. It relies on a set of interconnected brain areas in the frontal and temporal

lobes, typically in the left hemisphere, forming a network. This language network

supports both comprehension (spoken, written, and signed) [24] and production

[39]. It has been extensively studied to understand its sensitivity to linguistic

regularities at multiple levels [80].

Given the structural similarities between our Wilson-Cowan model for metapop-

ulation and the topological configuration of a language network, it seems reasonable

to apply our model to this context. We aim to determine if the Wilson-Cowan

model could effectively perform a simple classification task within this framework.

To investigate this, we combined our approach with a novel machine learning

architecture: transformers.

Transformers, as described by [92] in their seminal work, have become the

most trending topic in natural language processing (NLP) due to their outstanding

performance in capturing formal linguistic competence—i.e., the knowledge of

rules and statistical regularities of language. However, they exhibit limitations in

functional linguistic competence, which involves the practical use of language in

real-world situations [56].

This section explores the potential synergy between our model and a transformer

architecture. We explore this synergy to address the limitations of the Wilson-

Cowan model for metapopulation in extrapolating the complex structural patterns

embedded in language. Therefore, we utilize a transformer architecture, specifically

BERT [25], to extract the most important features from the text for a classification

task with our Neural Mass Network Model.

To achieve this, we chose to perform sentiment analysis on the IMDB dataset
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(see Appendix A.5). Sentiment analysis is an NLP technique used to determine

the emotional tone behind a body of text. This process involves analyzing text

data to identify and categorize the sentiments expressed, typically as positive or

negative. The IMDB dataset consists of movie reviews from the Internet Movie

Database, with each review labeled as either positive or negative. Therefore, the

classification task is a straightforward binary classification.

To be precise, we fine-tune a BERT model in combination with our Wilson-

Cowan model (see Appendix A.5), which in this case, as a reminder, has two stable

attractors planted in the dynamics. Given the simplicity of our binary classification

task, we slightly modify the training process. We use binary cross-entropy as

the loss function. To achieve this, we transform the output of the Wilson-Cowan

model for metapopulation into a probability of belonging to a class. This is done

by taking the normalized inverse vector, obtained by normalizing the L2 distance

between the terminal condition of the system of Wilson-Cowan equations and the

respective target, i.e. equation (11).

ψ(σψ) ψBERT (σψBERT
) SOTA

IMDB 0.8746(22) 0.8830(3) 0.9668 [20]

Table 5: Results of accuracy (ψ) of our model (first column), accuracy of BERT without our

Wilson-Cowan model and trained with the same hyper parameters of our model (second column),

state-of-the-art (third column), over five different training runs for the IMDB. The numbers in

parentheses represent the standard deviation of the mean and they refer to the last digits.

The accuracy results are presented in Tab. 5. As the reader can see, the

performance of our model in synergy with BERT is comparable to that of BERT

alone. However, in comparison to the state-of-the-art (SOTA) models, our per-

formance is 9% points lower. This discrepancy is due to the fact that current

SOTA classifications are dominated by massive transformers, which have parameter

counts that are two or more orders of magnitude greater than those of the BERT
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model. As detailed in Appendix B, our choice of architecture was also influenced

by the hardware limitations we faced.

6. Conclusion

In this manuscript, we have presented a Wilson-Cowan model for metapopu-

lation capable of learning to classify images and text. We began by defining the

model and detailing the methodology for embedding stable attractors within the

metapopulation dynamics. Subsequently, we explained how to train this model

using a supervised learning framework. We then conducted various numerical

analyses to demonstrate the high accuracy this model can achieve across different

classification tasks.

Although our method, even when combined with other computational neural

models, achieves high accuracy, it does not surpass the state-of-the-art deep

learning algorithms for classification tasks. This gap is primarily due to our choice

of architecture, which, while once state-of-the-art, has been eclipsed by models

with significantly more learning parameters, exceeding our hardware capabilities.

However, as demonstrated, our model’s performance is still close, but not equal, to

the maximum accuracy achieved by those advanced models. There are two main

reasons for this discrepancy: (i) We embed and enforce stability on our attractors

(targets), thus limiting the solution space within which the learning algorithm can

search for an optimal solution. (ii) We did not employ any image preprocessing

techniques, such as data augmentation, or advanced engineering tricks in building

the architecture, as our focus was not on achieving state-of-the-art performance

but on demonstrating the functionality of our biologically inspired model.

A careful reader may have wondered why we have not claimed that our model is

a plausible biological model but have only described it as biologically inspired. This

distinction arises primarily because, despite numerous connections to biological
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behavior and topological similarities with brain structures, our model is trained

using the backpropagation algorithm. This training method prevents us from

identifying our model as a truly plausible biological model.

However, backpropagation can be viewed as an efficient way to achieve reason-

able parameter estimates, which can then be subjected to further testing. Even

if backpropagation is considered merely a technical solution, the trained model

may still serve as a good approximation of neural systems. Currently, many

researchers are exploring new supervised learning optimization algorithms that are

more biologically valid, i.e., neurobiologically plausible methods by which the brain

could adjust its internal parameters to optimize objective functions [87]. Future

publications will aim to validate new biologically plausible Wilson-Cowan models

for metapopulation that can effectively learn visual or textual patterns.
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Appendix A. Datasets, CNN Architectures, hyper-parameters and

training tricks

All the architectures in this manuscript were chosen to fit with our hardware

(see Appendix B), ensuring that results could be obtained within a reasonable

time frame.

Appendix A.1. MNIST and Fashion MNIST

The MNIST dataset [23] is composed by 70000 grey scale handwritten images

of size 28 × 28 in K = 10 classes. The dataset is divided in 60000 images for

training set and 10000 for test set.

The Fashion-MNIST dataset [97] is composed by 70000 grey scale Zalando’s

article images of size 28× 28 in K = 10 classes. The dataset is divided in 60000

images for training set and 10000 for test set.

The CNN for these analyses is composed by two convolutional layers with 32

feature channels with kernel size 3× 3, each utilizing the ReLU activation function.

Each convolutional layer is followed by a max pooling layer with pool size 2× 2.

After these layers, a flatten layer is used to convert the output for the dense layers.

The CNN output is then passed to three distinct dense layers with 2048, 1024, and

784 neurons, all using the ReLU activation function. The second and third dense

layers are preceded by a batch normalization layer. The output of the third dense

layer is then passed to our Wilson-Cowan model for metapopulation, with N = 784.

The total number of parameters is 5179521, divided into 615441 parameters for

our Wilson-Cowan model for metapopulation and 4564080 for the CNN part plus

the three dense layers.
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We used a learning rate of 0.0001 for this analysis. We performed an initial

training procedure only on the CNN part plus the three dense layers, using a mini-

batch size of 10 for 35 epochs. Then, we conducted a complete training procedure

for the entire model, including our Wilson-Cowan model for metapopulation, with

a mini-batch size of 200 for 70 epochs and a value of T = 3.5∆t−1, where ∆t = 0.1.

The loss function was set to be always the one in equation (9).

Appendix A.2. VGG-16

The VGG-16 [86] model, where VGG stands for the Visual Geometry Group,

who developed the model, and 16 refers to the number of learnable layers in

the model, has some simple designed principles leading to a relative uniform

architecture that minimizes the number of hyperparamete choices that need to be

made. In principle, it was developed to take an input image having 224× 224× 3

colored pixels (RGB channels), followed by sets of convolutional and pooling layers

for downsampling. It can be also applied to smaller color images 32× 32× 3. Here

we present the original architecture as described in [10].

On each convolutional layer is applied a filter of size 3 × 3 with a stride of

1, same padding, and a ReLU activation function. Each pooling layer, instead,

applies a maximum pooling operation with stride 2, filter size 2× 2, downsampling

the number of units by a factor 4. To be precise, the first learnable layer is

a convolutional layer in which each unit takes input from a 3 × 3 × 3 tensor

from the stack of input channels, and so has 28 parameters including the bias.

These parameters are shared across all units in the feature map for that channel.

There are 64 such feature channels in the first layer, giving an output tensor of

224× 224× 64. The second layer is also convolutional and again it has 64 channels.

This is followed by the first maximum pooling layer that gives feature maps of size

112×112. The third and the fourth layer are again convolutional, of dimensionality

112× 122 with 128 channels. This is again followed by a maximum pooling layer
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to give a feature map size 56× 56, followed by three convolutional layers with 256

channels and followed again by another maximum pooling layer to give a feature

map size 28 × 28. The output of this layer is feed forwarded to another set of

three convolutional layers each having 512 channels, followed by another maximum

pooling layer, which downsamples to feature maps of size 14× 14. This is followed

by three more convolutional layers, with 512 channels, and another maximum

pooling layer for downsampling to 7× 7, with 512 channels. Finally, for making

classification, three dense layers are added. In this manuscript, the last three dense

layers are modified (see main text, and later subsections).

Appendix A.3. CIFAR10

The CIFAR-10 dataset [51] is composed by 60000 colored images of size 32×

32×3 in K = 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

and truck), with 6000 images per class. There are 50000 training images and 10000

test images. The CNN for this analysis is composed by the VGG16 architecture

(see Appendix A.2). After these layers, a flatten layer is used to convert the

output for the dense layers. The CNN output is then passed to three distinct dense

layers with 2048, 1024, and 784 neurons, all using the ReLU activation function.

The second and third dense layers are preceded by a batch normalization layer.

The output of the third dense layer is then passed to our Wilson-Cowan model

for metapopulation, with N = 784. The total number of parameters is 19294817,

divided into 615441 parameters for our Wilson-Cowan model for metapopulation

and 18679376 for the CNN part plus the three dense layers.

We used a learning rate of 0.0001 for this analysis. We performed an initial

training procedure only on the CNN part plus the three dense layers, using a mini-

batch size of 10 for 70 epochs. Then, we conducted a complete training procedure

for the entire model, including our Wilson-Cowan model for metapopulation, with

a mini-batch size of 200 for 70 epochs and a value of T = 3.5∆t−1, where ∆t = 0.1.
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The loss function was set to be always the one in equation (9).

Appendix A.4. TF-FLOWERS

The TF-FLOWERS dataset [91] is composed by 3670 colored 224× 224× 3

images of flowers, categorized into K = 5 distinct classes: daisy, dandelion, roses,

sunflowers, and tulips. We chose 90% of the dataset as training images and 10%

test images. The CNN for this analysis is composed by the VGG16 architecture

(see Appendix A.2), with pre-trained weights given by IMAGENET dataset. After

these layers, a flatten layer is used to convert the output for the dense layers. The

CNN output is then passed to four distinct dense layers with 4096, 2048, 1024,

and 784 neurons, all using the ReLU activation function. The second and third

dense layers are preceded by a batch normalization layer. The output of the third

dense layer is then passed to our Wilson-Cowan model for metapopulation, with

N = 784. The total number of parameters is 129460641, divided into 615441

parameters for our Wilson-Cowan model for metapopulation and 128845200 for

the CNN part plus the three dense layers.

We used a learning rate of 0.001 for this analysis. We performed an initial

training procedure only on the CNN part plus the three dense layers, using a mini-

batch size of 10 for 70 epochs. Then, we conducted a complete training procedure

for the entire model, including our Wilson-Cowan model for metapopulation, with

a mini-batch size of 32 for 100 epochs and a value of T = 3.5∆t−1, where ∆t = 0.1.

The loss function was set to be always the one in equation (9).

Appendix A.5. IMDB

The IMDB (Internet Movie Database) dataset [73] is a comprehensive and

widely-used dataset in the field of machine learning and data analysis, particularly

for tasks involving natural language processing (NLP) and sentiment analysis.

This dataset contains extensive information on movies, television shows, and other
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forms of visual entertainment. The labeled data set consists of 50000 IMDB movie

reviews, specially selected for sentiment analysis. The sentiment of reviews is

binary, meaning the IMDB rating < 5 results in a sentiment score of 0, and rating

≥ 7 have a sentiment score of 1. No individual movie has more than 30 reviews.

The 25000 review labeled training set does not include any of the same movies

as the 25000 review test set. In addition, there are another 50000 IMDB reviews

provided without any rating labels.

For this analysis we consider transformer language model based on encoders,

which are models that take sequences as input and produce fixed length vectors,

such a class labels, as output. More precisely, we use the Bidirectional Encoder

Representations from Transformers (BERT) architecture, which is a pre-trained

language model [25]. Unlike other language representation models, BERT is

designed to pretrain deep bidirectional representations from unlabeled text by

jointly conditioning on both left and right context in all layers. For our analysis

we used the so called BERTBASE model [25]. It is composed by 12 transformer

layers, with hidden sizes equal to 768 and with 12 self-attention heads. The total

number of parameters for BERT is set to 109482241.

This language model is then associated with a dropout layer with a parameter

p = 0.5 and a dense layer of 512 neurons with a sigmoid activation function.

Following this, we integrate our Wilson-Cowan model for metapopulation (with

N = 512), ending up with a final model with 110138626 . As stated in the main

text, we perform a modification for this particular classification task. Specifically,

we do not compare the final state of the dynamics with the respective planted

eigenvector anymore. Instead, we apply a non-linear transformation to the final

state, normalizing the inverse of equation (11), to obtain a straightforward output

for our K = 2 class problem. Consequently, we derive a probability to be in one of

the two classes, allowing us to apply binary cross-entropy as the loss function and

45



utilize binary accuracy to test the performance of our learning algorithm. We used

a learning rate of 0.00003, and we fixed the number of epochs for the fine-tuning

of the whole network at 10, with mini-batch size equal to 4. The final time T was

set to be equal 4.0∆t−1, with ∆t = 0.1. For the tokenization of the dataset, we

have followed the tutorial given at this link 6 .

Appendix B. Hardware Specification

All the analyses presented in this manuscript were run on a Lenovo 256GB

RAM workstation with 2 GPU NVIDIA-RTX A5500, 24GB RAM each.

Appendix C. Visual Cortex

The visual cortex (grey, purple and green) is the primary cortical region of the

brain that receives, integrates, and processes visual information relayed from the

retinas. It is in the occipital lobe of the primary cerebral cortex, which is in the

most posterior region of the brain. The visual cortex divides into five different areas

(V1 to V5) based on function and structure. In figure 9 Panel a), only the positions

of V1, V2, and V4 are presented for the sake of simplicity. Inferior Temporal (IT)

is the cerebral cortex on the inferior convexity of the temporal lobe in primates

including humans. It is crucial for visual object recognition and is considered to be

the final stage in the ventral cortical visual system (grey and purple). The ventral

stream transforms visual inputs into perceptual representations that embody the

enduring characteristics of objects and their spatial relations. The ventral stream

begins with V1, goes through visual area V2, then through visual area V4, and

to the inferior temporal cortex. The ventral stream, is associated with form

recognition, object representation and storage of long-term memory [84, 67]. The

6https://www.tensorflow.org/text/tutorials/classify text with bert
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dorsal stream (grey and green) begins with V1, goes through area V2, then to the

dorsomedial area and middle temporal area and to the posterior parietal cortex.

The dorsal stream’s job is to mediate the visual control of skilled actions, such

as reaching and grasping, directed at objects in the world. To do this, the dorsal

stream needs to register visual information about the goal object on a moment-to-

moment basis, transforming this information into the appropriate coordinates for

the effector being used [84, 67].

Appendix D. Scaling Analysis

In this appendix, we present an analysis of the scaling behavior [59] of our

neural mass network model when applied to classification tasks on the MNIST

and Fashion MNIST datasets. We analyze how accuracy scales with the image

size. To achieve this, we create new datasets from the original ones, where the

image sizes are 14× 14, 17× 17, 21× 21, 24× 24, 28× 28, 31× 31, and 35× 35.

Table D.6 shows the accuracy as a function of the input size N for MNIST,

while Table D.7 for Fashion MNIST. For both tables, The first column identifies

the size of the image, the second the value of the γ parameter, the third one the

accuracy of the model, and the last column is the time for a single epoch in seconds

on our hardware Appendix B.
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N γ ψ time for each epoch [s]

196 0.86046 0.9746 2

289 0.8822 0.98 3

441 0.8311 0.9818 4

576 1.066 0.9815 5

784 0.839 0.9813 7

961 0.827 0.9781 10

1225 1.044 0.981 12

Table D.6: Scaling of neural mass network model on varying image sizes for MNIST dataset.

Total number of epochs 525, batch size 200.

Appendix E. Ablation experiments

In this appendix, we present several ablation experiments [66] on our neural

mass network model. We focus on the MNIST dataset and test the hypotheses

required to enable the model to function as a classifier.

We begin by removing the stability criterion from our model while keeping all

other conditions fixed. Specifically, we force the eigenvalues of the matrix Λ to fall

outside the stability region. However, when we do this, the optimization process

becomes infeasible, preventing us from transforming the Wilson-Cowan model for

metapopulation into a classifier.

From this reason, stability is always preserved in our model. Next, we performed

ablation on the planted eigenvectors. In this setup, we maintained the stability

regions for the trainable eigenvalues, retained the target structure using the fixed

points of the dynamics (as presented in this work), kept the zero eigenvalues

fixed, and removed the planted eigenvectors, allowing the model to learn them

automatically. We observed that the model was able to construct these eigenvectors;

however, it achieved a lower accuracy, classifying correctly only 97.83% of the test
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N γ ψ time for each epoch [s]

196 0.8625 0.8752 2

289 1.064 0.8794 3

441 0.971 0.8788 4

576 0.910 0.8853 5

784 0.992 0.8839 7

961 1.016 0.8847 10

1225 1.016 0.887 12

Table D.7: Scaling of neural mass network model on varying image sizes for Fashion MNIST

dataset. Total number of epochs 350, batch size 200.

set images after training.

We then analyzed the model under the condition that the fixed eigenvectors

are not required to remain within the kernel of A, while all other components of

the model were kept unchanged. In this experiment, we set the fixed eigenvalues

to 0.1. Under these conditions, the accuracy decreased to 97.28%, compared to

the case in which the fixed eigenvectors remain in the kernel of A.

In conclusion, we observed that the combination of all methods used to construct

the Wilson-Cowan model for metapopulation as a classifier is essential for achieving

high accuracy. Furthermore, we found that the stability criterion is the most crucial

component of the model; without it, our model cannot be used for classification

tasks
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[21] DeFelipe, J. and Fariñas, I. (1992). The pyramidal neuron of the cerebral cor-

tex: Morphological and chemical characteristics of the synaptic inputs. Progress

in Neurobiology, 39(6):563–607.

51



[22] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).

Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference

on Computer Vision and Pattern Recognition, pages 248–255.

[23] Deng, L. (2012). The mnist database of handwritten digit images for machine

learning research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–

142.

[24] Deniz, F., Nunez-Elizalde, A. O., Huth, A. G., and Gallant, J. L. (2019). The

representation of semantic information across human cerebral cortex during lis-

tening versus reading is invariant to stimulus modality. Journal of Neuroscience,

39(39):7722–7736.

[25] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805.

[26] DeWeerdt, S. (2019). How to map the brain. Nature, 571(7766):S6–S6.

[27] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-

terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J.,

and Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image

recognition at scale. In International Conference on Learning Representations.

[28] Duchet, B., Weerasinghe, G., Cagnan, H., Brown, P., Bick, C., and Bogacz,

R. (2020). Phase-dependence of response curves to deep brain stimulation and

their relationship: from essential tremor patient data to a wilson–cowan model.

The Journal of Mathematical Neuroscience, 10:1–39.
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[70] Murray, J. D., Demirtaş, M., and Anticevic, A. (2018). Biophysical modeling

of large-scale brain dynamics and applications for computational psychiatry.

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(9):777–787.

Computational Methods and Modeling in Psychiatry.

[71] Nandi, M. K., de Candia, A., Sarracino, A., Herrmann, H. J., and de Arcange-

lis, L. (2023). Fluctuation-dissipation relations in the imbalanced wilson-cowan

model. Phys. Rev. E, 107:064307.

[72] Painchaud, V., Doyon, N., and Desrosiers, P. (2022). Beyond wilson–cowan

57



dynamics: oscillations and chaos without inhibition. Biological Cybernetics,

116(5-6):527–543.

[73] Pal, A., Barigidad, A., and Mustafi, A. (2020). Imdb movie reviews dataset.

[74] Patankar, S. P., Kim, J. Z., Pasqualetti, F., and Bassett, D. S. (2020). Path-

dependent connectivity, not modularity, consistently predicts controllability of

structural brain networks. Network Neuroscience, 4(4):1091–1121.

[75] Pathak, A., Sharma, V., Roy, D., and Banerjee, A. (2022). Biophysical

mechanism underlying compensatory preservation of neural synchrony over the

adult lifespan. Communications Biology, 5(1):567.

[76] Pietras, B. and Daffertshofer, A. (2019). Network dynamics of coupled

oscillators and phase reduction techniques. Physics Reports, 819:1–105. Network

dynamics of coupled oscillators and phase reduction techniques.

[77] Pinder, I. and Crofts, J. J. (2021). Oscillations and Synchrony in a Network

of Delayed Neural Masses, pages 187–211. Springer Singapore, Singapore.

[78] Pinto, D. J., Brumberg, J. C., Simons, D. J., Ermentrout, G. B., and Traub,

R. (1996). A quantitative population model of whisker barrels: re-examining

the wilson-cowan equations. Journal of computational neuroscience, 3:247–264.

[79] Rajalingham, R., Issa, E. B., Bashivan, P., Kar, K., Schmidt, K., and DiCarlo,

J. J. (2018). Large-scale, high-resolution comparison of the core visual object

recognition behavior of humans, monkeys, and state-of-the-art deep artificial

neural networks. Journal of Neuroscience, 38(33):7255–7269.

[80] Regev, T. I., Kim, H. S., Chen, X., Affourtit, J., Schipper, A. E., Bergen,

L., Mahowald, K., and Fedorenko, E. (2024). High-level language brain regions

process sublexical regularities. Cerebral Cortex, 34(3):bhae077.

58



[81] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological review, 65(6):386.

[82] Sanchez-Rodriguez, L. M., Bezgin, G., Carbonell, F., Therriault, J., Fernandez-

Arias, J., Servaes, S., Rahmouni, N., Tissot, C., Stevenson, J., Karikari, T. K.,

et al. (2024). Personalized whole-brain neural mass models reveal combined

aβ and tau hyperexcitable influences in alzheimer’s disease. Communications

Biology, 7(1):528.

[83] Sanz-Leon, P., Knock, S. A., Spiegler, A., and Jirsa, V. K. (2015). Mathe-

matical framework for large-scale brain network modeling in the virtual brain.

NeuroImage, 111:385–430.

[84] Schneider, G. E. (1969). Two visual systems. Science, 163(3870):895–902.

[85] She, L., Benna, M. K., Shi, Y., Fusi, S., and Tsao, D. Y. (2024). Temporal

multiplexing of perception and memory codes in it cortex. Nature, pages 1–8.

[86] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks

for large-scale image recognition. In Bengio, Y. and LeCun, Y., editors, 3rd

International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings.

[87] Song, Y., Millidge, B., Salvatori, T., Lukasiewicz, T., Xu, Z., and Bogacz, R.

(2024). Inferring neural activity before plasticity as a foundation for learning

beyond backpropagation. Nature Neuroscience, pages 1–11.

[88] Strogatz, S. H. (2018). Nonlinear dynamics and chaos with student solutions

manual: With applications to physics, biology, chemistry, and engineering. CRC

press.

59



[89] Sun, Y., Lim, J., Meng, J., Kwok, K., Thakor, N., and Bezerianos, A. (2014).

Discriminative analysis of brain functional connectivity patterns for mental

fatigue classification. Annals of biomedical engineering, 42:2084–2094.

[90] Tanveer, M. S., Khan, M. U. K., and Kyung, C.-M. (2021). Fine-tuning

darts for image classification. In 2020 25th International Conference on Pattern

Recognition (ICPR), pages 4789–4796. IEEE.

[91] TensorFlow-Team (2019). Flowers. Online.

[92] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon,

I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,

and Garnett, R., editors, Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc.

[93] Wilson, H. R. (2017). Binocular contrast, stereopsis, and rivalry: Toward a

dynamical synthesis. Vision Research, 140:89–95.

[94] Wilson, H. R. and Cowan, J. D. (1972). Excitatory and inhibitory interactions

in localized populations of model neurons. Biophysical journal, 12(1):1–24.

[95] Wilson, H. R. and Cowan, J. D. (1973). A mathematical theory of the

functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2):55–

80.

[96] Wilson, H. R. and Cowan, J. D. (2021). Evolution of the wilson–cowan

equations. Biological cybernetics, 115(6):643–653.

[97] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel im-

age dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747.

60



[98] Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D.,

and DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict

neural responses in higher visual cortex. Proceedings of the National Academy

of Sciences, 111(23):8619–8624.

[99] Zankoc, C., Biancalani, T., Fanelli, D., and Livi, R. (2017). Diffusion ap-

proximation of the stochastic wilson–cowan model. Chaos, Solitons & Fractals,

103:504–512.

[100] Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., and Parmar, M.

(2024). A review of convolutional neural networks in computer vision. Artificial

Intelligence Review, 57(4):1–43.

61


	Introduction
	The model
	Enforcing Linear Stability
	Training
	Experimental Validations
	Training from Scratch
	Model Fine-Tuning with Pre-Trained Weights
	 Wilson-Cowan model for metapopulation in combination with a Convolutional Neural Network
	 Wilson-Cowan model for metapopulation in combination with a Pre-Trained Transformer


	Conclusion
	Datasets, CNN Architectures, hyper-parameters and training tricks
	MNIST and Fashion MNIST
	VGG-16
	CIFAR10
	TF-FLOWERS
	IMDB

	Hardware Specification
	Visual Cortex
	Scaling Analysis
	Ablation experiments 

