Home
My Research
Talks
Publications
Teaching
Outreach
Contact
Light
Dark
Automatic
article-preprint
A Bridge between Dynamical Systems and Machine Learning: Engineered Ordinary Differential Equations as Classification Algorithm (EODECA)
EODECAs, merging machine learning with dynamical systems, enhance interpretability and transparency in neural networks. They employ continuous ordinary differential equations, offering both high classification accuracy and an understanding of data processes, addressing the opacity of traditional deep learning models. This approach signifies a step towards more comprehensible machine learning models.
Raffaele Marino
,
Lorenzo Giambagli
,
Lorenzo Chicchi
,
Lorenzo Buffoni
,
Duccio Fanelli
PDF
Cite
Source Document
Complex Recurrent Spectral Network
The Complex Recurrent Spectral Network (C-RSN) is a novel AI model that more accurately mimics biological neural processes using localized non-linearity, complex eigenvalues, and separated memory/input functionalities. It demonstrates dynamic, oscillatory behavior akin to biological cognition and effectively classifies data, as shown in tests with the MNIST dataset.
Lorenzo Chicchi
,
Lorenzo Giambagli
,
Lorenzo Buffoni
,
Raffaele Marino
,
Duccio Fanelli
PDF
Cite
Source Document
Mobility-based prediction of SARS-CoV-2 spreading
This paper analyzes the effectiveness of containment measures for SARS-CoV-2, using mobility data to gauge their impact. A deep learning model predicts virus spread scenarios in Italy, showing how these measures help flatten the infection curve and estimating the time required for their noticeable effects.
Lorenzo Chicchi
,
Lorenzo Giambagli
,
Lorenzo Buffoni
,
Duccio Fanelli
Cite
Cite
×