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Abstract

In a world increasingly reliant on machine learning, the interpretability of these
models remains a substantial challenge, with many equating their functional-
ity to an enigmatic black box. This study seeks to bridge machine learning and
dynamical systems. Recognizing the deep parallels between dense neural networks
and dynamical systems, particularly in the light of non-linearities and successive
transformations, this manuscript introduces the Engineered Ordinary Differential
Equations as Classification Algorithms (EODECAs). Uniquely designed as neural
networks underpinned by continuous ordinary differential equations, EODECAs
aim to capitalize on the well-established toolkit of dynamical systems. Unlike
traditional deep learning models, which often suffer from opacity, EODECAs
promise both high classification performance and intrinsic interpretability. They
are naturally invertible, granting them an edge in understanding and trans-
parency over their counterparts. By bridging these domains, we hope to usher
in a new era of machine learning models where genuine comprehension of data
processes complements predictive prowess.

Keywords: Dynamical Systems, Learning methods, Mechanistic Interpretability,
Statistical Mechanics
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1 Introduction

In an era marked by the exponential growth of data complexity and computational
challenges, machine learning (ML) [1, 2] and deep learning (DL) [3, 4] stand as trans-
formative pillars. Their profound impacts are felt across myriad of disciplines, from
medicine to finance [5–17]. However, as the sophistication of these tools has increased,
so too have the challenges surrounding their interpretability [18]. Deep learning, par-
ticularly, operates in ways that are often likened to a black box—we can observe its
inputs and outputs, but the intricate internal mechanisms that produce these outputs
remain elusive. This opacity can undermine trust in ML and DL systems, especially in
critical applications where understanding the reasoning behind decisions is imperative.

Interpretability in machine learning denotes our ability to transparently compre-
hend and trace how algorithms arrive at their conclusions. It serves as a vital check
and balance, ensuring models operate logically and fairly, and offering insights into
potential flaws or biases. True interpretability goes beyond merely producing reliable
results—it seeks to offer clarity on the why and how behind these outcomes.

In this paper, we embark on an ambitious journey to bridge the realms of machine
learning and dynamical systems [19], so to provide novel insight into explicable decision
making. While these two domains have seen isolated progress in their respective fields,
our work marks a pioneering effort [20, 21], to the best of our knowledge, in truly
integrating them. We introduce and construct a unique dynamical system governed by
ordinary differential equations (ODEs) that possesses the capability to be trained for
classification tasks [22], with a computational complexity of O(N2), where N is the
input size. This is not just an innovation in methodology, it heralds the inception of a
new class of algorithms, which we have termed the Engineered Ordinary Differential
Equations as Classification Algorithms (EODECAs).

The power of EODECAs lies not just in its ability to classify but in its inherent
dynamical system structure. Such a foundation equips us with the unprecedented
advantage of tapping into the vast arsenal of tools traditionally reserved for dynamical
systems [23]. Consequently, Mechanistic Interpretability [24–26] becomes an intrinsic
feature, enabling us not only to bolster the accuracy of our models but also to capitalize
on a genuine understanding of the operative processes underpinning the data handling
and classification.

At the heart of our methodology lies a unique dynamical system shaped as a neural
network. A noticeable feature is that every neuron (or node) within this network
operates under the guidance of an ODE that is continuous across both temporal
and spatial dimensions. Linear interactions between distinct nodes are in place, as
stipulated by an underlying coupling matrix. The system’s stationary asymptotic state
manifests as a stable attractor of the dynamics, when considering the network as a
whole. Different attractors are indeed associated to distinct items to be eventually
classified.

Delving deeper, we innovatively introduce the ability to embed, or plant, stable
attractors within the dynamical system’s phase space. This strategic planting ensures
that post reaching its designated attractor in response to an input, the system firmly
anchors itself there, sustaining its position indefinitely. Such a characteristic bestows
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upon the system a layer of trust [27]; the predictability that once a fixed point is
attained, deviations are improbable.

But the true prowess of our approach becomes evident when we harness the expan-
sive toolkit of dynamical systems. The ability of the dynamical systems to cope with
the assigned classification task leaves a tangible imprint in the extension of the basins
of attraction, as sculpted upon training. Further, we gain insight into the concept
of invertibility [28], a fundamental byproduct of our design. While traditional deep
neural networks scheme can adeptly map inputs to outputs, reversing this process
to glean the original input from an output is non-trivial, if not impossible in many
instances [29]. This poses challenges, especially when trying to understand the intrin-
sic behaviors and characteristics of such networks. EODECA, with its design rooted
in the principles of dynamical systems, circumvents this limitation, offering not only
a robust classification tool but also an invertible architecture that stands out in the
realm of machine learning models.

While traditional networks have grappled with opacity, our work with EODECA
opens a new chapter in understanding and interpretability in machine learning. With
EODECA, we not only address these challenges but also usher in an era where
interpretability stands at the forefront of model design.

The paper is structured as follows: in Sec. 2.1, we delve deep into the architec-
ture, principles, and specifics of an EODECA system, by also showing how to embed
stable attractors within the dynamical system. Sec. 2.2, sheds light on our experi-
mental setup, offering a comparative analysis between EODECA’s performance and
traditional models, and discussing detailed findings from our study. More precisely,
we present results on a synthetic dataset [30] and then we show the performance of
EODECA on two well known benchmark datasets, i.e. MNIST and Fashion MNIST,
displaying how we can achieve performance of a multi layer perceptorn (MLP). In Sec.
3 we interpret the results’ implications, address any limitations or challenges faced,
and propose directions for future research.

2 Results

2.1 Model

We present our learnable autonomous dynamical system on a neural network, com-
posed by N neurons. Overall, the system is described by the following ordinary
differential equation:

⃗̇x(t) = F⃗ (x⃗), (1)

where x⃗ ∈ RN , and F⃗ (x⃗) = −∇⃗V (x⃗(t))+βAx⃗(t). We assume x⃗ having entries of O(1).
⃗̇x(t) represents the derivative with respect to time of x⃗(t). The potential V (x⃗(t)) :

RN → R is a scalar field, and ∇⃗ denotes the gradient operator. The matrix A ∈ RN×N

is the adjacency matrix. It describes the interactions between the nodes of the network.
β is a parameter of the system. In the following we will assume a double well potential
in the form V (x⃗(t)) = 2γ(x⃗2(t)−a21⃗)T (x⃗2(t)−a21⃗), where the i-th component of x⃗2 is
x2
i , γ and a are two parameters of the dynamical system. The former sets the intensity

of the potential, while the latter controls the position of the two symmetric wells, or,
stated equivalently, the location of the fixed points of the a-spatial dynamics for the
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examined system. It should be emphasized that a prototypical double well potential
is found to emerge in models relevant to computational neuroscience, as follow the
intertwined interaction between distinct families of excitatory and inhibitory neurons
[31]. In this respect, the simplified model that we have here formulated unlocks a
perspective view full of captivating biomimetic implications.

Notice that the parameter γ is O(1), as the magnitude of the state variables are. It
can be indeed treated as a genuinely learnable parameter. At variance, the stabilization
of the linear terms requires setting β = 1√

N
, to ensure that the effective energy function

E(x⃗(t)) = V (x⃗(t)) − β
2 x⃗(t)

TAx⃗(t) behaves as a O(N) quantity, when considering the
A entries to be O(1) i.i.d. from a standard Gaussian distribution, as in [32, 33].

The matrix A, as mentioned above, encapsulates all relevant information that
pertains to the topology of the underlying network. For reasons that will become
transparent in the following we shall assume A = ΦΛΦ−1, where Φ ∈ RN×N and Φ−1

is the inverse matrix of Φ. The columns of the matrix Φ are indeed the eigenvectors
of matrix A, and the matrix Λ ∈ RN×N is diagonal. It contains the eigenvalues of
A. For the sake of simplicity we denote with ϕ⃗(l) the columns of Φ, with l = 1, .., N .
The choice of dealing with the above decomposition of the coupling matrix echoes the
spectral approach to machine learning discussed in [34–37].

The asymptotic attractors, signifying specific configurations that the system can be
attracted towards, at large time, are embedded in the matrix Φ, following a procedure

that we will hereafter illustrate. Label with ϕ⃗
(k)

the eigenvectors corresponding to our
identified stable attractors. Specifically, the k = 1, . . . ,K columns of matrix Φ, where
K stands for the total number of classes, as reflecting the intimate complexity of

the classification under exam. The entries of the selected vectors ϕ⃗
(k)

can take values
±a (i.e. the positions of the fixed points of the a-spatial dynamics, β = 0), namely(
ϕ⃗
(k)

)
i

= ±a, ∀i = 1, ..., N . By doing so, we liberate a whole reservoir of degrees of

freedom to shape a vast gallery of distinct attractors, depending on the specific needs

of the problem being inspected. Further, we place the target vectors ϕ⃗
(k)

in the kernel
of A . This amounts to say that the corresponding eigenvalues in Λ are identically

equal to zero. The above prescriptions implies that ϕ⃗
(k)

with k = 1, . . . ,K are indeed
stationary solutions for the spatially coupled dynamics, as it can be proved with a
straightforward calculation. As a next step in the story, we need to ensure the stability
of the planted attractors. This condition is met by requiring that the eigenvalues of

matrix A lie within the range (−∞, 8a2γ
β ). This conclusion is reached via a standard

linear stability analysis of the governing model as described in the Method Section 4.1.
Through careful selection of the residual eigenvalues and the associated eigenvec-

tors’ components, we aim at self-consistently shaping the underlying energy landscape,
so as to steer the dynamics of the systems towards the deputed attractor. This is the
target destination for the item supplied as an input, depending on the class it belongs
to. Stated differently, training the network corresponds to shaping the basins of the
(asymptotically stable) planted attractors that we have in advance encapsulated in
the ruling dynamics.
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When it comes to the technical aspects of the training protocol, columns of Φ not
directly aligned with the predefined attractors are subjected to a process of stochastic
initialization. Similarly, the eigenvalues of matrix A undergo a randomized initializa-
tion, firmly anchored within the boundaries of predefined stability criteria, thereby
ensuring the resilient and robust evolution of the system’s dynamics. All the columns
of Φ not directly involved in the definition of the attractors, as well as the associated
eigenvalues, are then treated as learnable parameters during the training process (see
Sec. 4.2). A schematic representation of the dynamic system model is displayed in Fig.
1 panel b.

2.2 Experimental results

In this section, we focus on presenting the results obtained by applying our model
to various benchmarks. The first benchmark examined is a synthetic dataset, metic-
ulously crafted using binarized characters. This dataset, along with its corresponding
targets, is illustrated in Figure 1, panel a. Utilizing this dataset allows for a clearer
and more direct presentation of the obtained results. Subsequently, we will discuss
the results achieved on the well-known MNIST [38] and Fashion MNIST [39] datasets,
which are established standards for evaluating performance in image classification
tasks. Additional details regarding the utilized benchmarks, included the definitions
of ϵtrain and ϵtest, are available in Sec. 4, specifically in subsections 4.3 and 4.2.
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a) b)

c) d)

Fig. 1: a):Visual representation of the first five letters of the alphabet (A − E) in a 7 × 7 grid format. The top row showcases the original, noise-free letters. The middle row displays
the same letters but with a noise factor of ϵ = 0.2 applied, introducing slight distortions. The bottom row provides the target representations for each letter, serving as a simplified
reference. This depiction allows for a direct comparison between the original, noisy, and target versions of each letter.b): Schematic representation of the dynamic system model employed,
illustrating a neural network in which each neuron is uniquely associated with a single pixel and characterized by a double potential well. The red balls indicate the position of pixels in
the double well during the dynamics. The adjacency matrix A highlights the topology of the network, while an outer green circle symbolizes the temporal iterations required to reach
the asymptotic steady state.c):Top panel -Displays the temporal evolution of all components xi(t) of the letter E. Here, the components tend to settle on fixed points, however, these do
not match the planted ones. Bottom panel -Portrays the trajectory in the phase space of two arbitrarily chosen components. The components originate from two distinct starting points,
represented by squares, but do not reach the fixed points highlighted by the black dots A1 and A2.d):Top panel -Reveals the post-training dynamics. Starting from the letter E, the
dynamical system readily reaches the designated fixed points. Bottom panel -Describes the trajectory of the same components in the phase space after training. In this context, the image
pixels are directly transported to their corresponding fixed points. The end points of the trajectories are symbolized by empty circles. Arrows identify the direction of the trajectories.
We adopted for the analysis L = 2.
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Our analysis, detailed in Fig. 1 panel c and d, focuses on the system’s dynamics
evolution before (c) and after (d) training, using image components such as the letter
E. Before training (see upper and lower panels, of c), the system’s behavior does
not accurately reproduce the target of letter E, as components converge to states
misaligned with intended fixed points due to influential initialization of matrix A,
despite the stability of the letter E’s attractor.

Post-training, the optimized matrix A results in all coordinates consistently align-
ing with the deputed fixed points (upper panel of d). This is further depicted in the
phase space in the lower panel of d, where post-training trajectories precisely converge
to the intended fixed points, marked as A1 and A2, contrary to the erratic trajectories
observed pre-training panel (lower panel of c). The training contributes to shape the
basin of the planted attractor in such a way that the supplied item is directed towards
the desired destination target.

In our study, a scrupulous analysis was executed, to challenge the effective ability
of the scrutinized system to reach the reference asymptotic attractor. As an average
measure of the relative distance between the state variable displayed by the system
at time t and the final destination target that should be eventually approached, we
introduce the Mean Squared Error (MSE) defined as:

MSE(t) =
1

M

M∑
m=1

(x⃗(t)(m) − y⃗(m))T (x⃗(t)(m) − y⃗(m)), (2)

where M identifies the cardinality of the analyzed data sample, and y⃗ the m-th

target, i.e., the corresponding ϕ⃗
(k)

. Key variations were unveiled in trained models,
attributable to the noise level parameter, ϵtrain, manifesting in the MSE behaviors
as showcased in Fig. 2 (panels a and b). Observations reveal that depending on the
value of ϵtest, the MSE either approaches zero or stabilizes at non-zero values, under-
scoring the existence of a dual dynamical phase within the system. A critical insight
gleaned from our study is the discernment of trajectories not converging to the attrac-
tors. This points to the existence of distinct dynamic phases and attribute significant
connotations to the observed transition.

To challenge the actual numericaal convergence, we varied the integration
timesteps, ∆t, and recovered the results reported in Fig. 2 (panel c). We can hence
utterly conclude that the reported analysis provides a faithful representation of the
underlying continuum dynamical system.

To quantify the system’s efficacy to cope with the sought classification task,
accuracy was computed as:

ρ(x⃗∗, y⃗ = ϕ⃗) =
1

|Dtest|

|Dtest|∑
r=1

1

N

N∑
i=1

δ(x
∗(r)
i , y

(r)
i ). (3)

Where δ(·, ·) is the Kronecker delta, x⃗∗ represents the output vector from the model

at infinite time (±a), y⃗ = ϕ⃗ is the corresponding target to the output vector, and
index r identifies the rth instance in the test dataset Dtest.
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Fig. 2: (a) The panel depicts an estimation of the temporal evolution of the Mean
Squared Error (MSE) across a sample of M = 2000 images A, for various ϵtest values,
at a fixed ϵtrain = 0.3. For scenarios where ϵtest < ϵtrain, the MSE tends towards zero
as time t approaches infinity. Conversely, when ϵtest ≥ ϵtrain, the temporal estimate of
the MSE increases with added noise. (b) A detailed analysis for t → ∞ reveals that
the MSE undergoes a first-order transition. In this context, trajectories in the phase
space post-training may not converge to the appropriate attractor. This phenomenon
is illustrated through the histogram of relative frequencies representing the number of
trajectories aligning with the correct attractor. For visual clarity, all non-zero values
are designated as 1. (c) The plot showcases the MSE at t = 10 as a function of the
chosen time step ∆t for numerical integration, employing the fourth-order Runge-
Kutta method. (d) The panel represents the accuracy of the model plotted against
ϵtest for a range of ϵtrain values from 0.0 to 1.0. We adopted for the analysis L = 2.

Analyzed across varied ϵtrain and ϵtest values, Fig. 2 (panel d) illustrates intriguing
performance trends and transitional behaviors, underscoring the nuanced influence of
noise levels during training and testing phases.
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In essence, our findings illuminate insights into the intricate transition behaviors
of the trained dynamical system, while providing, at the same time, an indirect reck-
oning of the size of the underlying basins of attraction. Taken altogether these latter
observations define pivotal avenues for future research exploration.

Upon training, we have obtained a basis of the scanned multi-dimensional space
which is tailored to the problem at hand. The basis is formed by the column vectors
of matrix Φ. Every supplied item x⃗ can be decomposed by using the aforementioned
basis. The set of obtained coefficients, c⃗ = Φ(−1)x⃗ returns a complete and equiva-
lent representation of the analyzed object x⃗. This framework can be used to probe
the model’s robustness and vulnerability to external source of disturbance from a dif-
ferent perspective, alternative to perturbing each individual pixel (which amounts to
operate with the canonical basis viewpoint). More specifically, we can proceed by per-
turbing individual eigen-directions - or punctually alter each coefficient c⃗ of the above
expansion. In doing so, several pixels get simultaneously modulated by the external
noise source, following a pattern of correlated activation that indirectly stems from the
accomplished training. In Sec. 4.4 we report the results of this analysis. Remarkably
enough only few directions can trigger the system unstable. In fact, we can convinc-
ingly show that the vast majority of imposed collective eigen-perturbations do not
affect the ability of the system to carry out the assigned classification task. In a world
where images are frequently subjected to noise and interference, understanding noise
resistance through coefficient perturbation can guide the implementation of resilient
designs and/or information compression strategies, ensuring that essential information
is preserved despite reductions.

Upon completing the analysis of the synthetic dataset, we can now shift our focus
to assess the robustness of EODECA in comparison to the most commonly cited
benchmarks in literature: MNIST and Fashion MNIST.

Transitioning from the dataset description to the empirical results on MNIST, we
observed promising outcomes with our dynamical approach to classification. Specifi-
cally, for the case where ϵtrain = 0.0, our system achieved an accuracy of 97.13% over
the test set. Considering the inherent simplicity of our method, this performance is
quite commendable. For a comparative perspective, it is noteworthy to mention that
this accuracy is closely aligned with that of a Multi-Layer Perceptron (MLP) with
ReLu activation functions, which boasts an accuracy rate of 98.25%. Such proximate
performance metrics underscore the potential and efficacy of our proposed dynamical
system, even when juxtaposed against more conventional machine learning architec-
tures. For the Fashion MNIST dataset, our results were illuminating. When set with
ϵtrain = 0.0, our model, rooted in dynamical systems, garnered an accuracy of 87.01%.
Interestingly, this is closely competitive with a conventional Multi-Layer Perceptron
(MLP) employing ReLu activation functions, which holds an accuracy of 89.55%. The
marginal difference in performance underscores the comparable efficacy of both mod-
els, emphasizing that our innovative approach can stand toe-to-toe with established
neural network architectures. For contextualizing our findings with the literature, we
refer to Sec. 4.5.

Now, as previously shown, we explore the influence of introducing pixel errors
into images on the accuracy of classification algorithms. Specifically, our focus lies in
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investigating the potential expansion of the basin of attraction MNIST and Fashion
MNIST. In Table 1, we delineate the behavior of classification accuracy in the MNIST
and Fashion MNIST datasets when trained under varying noise conditions — specifi-
cally, with ϵtrain = 0 (without noise) and ϵtrain ̸= 0 (with noise). It is palpable from
the table that the EODECA model performs consistently better than MLP in the pres-
ence of noise across both datasets. For the MNIST dataset, the EODECA’s robustness
is evidenced by its competitive accuracy relative to the MLP at almost all noise levels.

ϵtrain MNIST Fashion MNIST
EODECA MLP EODECA MLP

0.0 0.9713± 0.0017 0.9825± 0.0013 0.8701± 0.0034 0.8955± 0.0030
0.1 0.9780± 0.0016 0.9730± 0.0016 0.8727± 0.0033 0.8825± 0.0032
0.2 0.9741± 0.0016 0.9641± 0.0018 0.8786± 0.0033 0.8745± 0.0033

Table 1: This table delineates the performance accuracy of two distinct
models, EODECA and MLP, when trained under varying levels of noise
(ϵtrain) an tested in the case ϵtest = 0.0. The accuracy metrics are sepa-
rately cataloged for two datasets: MNIST and Fashion MNIST. Each cell
indicates the model’s accuracy, facilitating a comparative assessment of
the models’ robustness and adaptability in the presence of noise-induced
perturbations in the input data during training process.

Further, we delve deeply into exploring the invertibility of our model with respect
to the dynamics within EODECA. Invertible machine learning models can be used
for data compression, enabling high-fidelity data decompression, critical in fields like
medical imaging [40]. They also find applications in generative modeling, where mod-
els like normalizing flows leverage invertibility to transform simple distributions into
complex ones, useful for synthetic data generation [41]. Another significant application
lies in inverse inference, where the model reverses to deduce causes from effects, valu-
able in regression analysis and fields where causality is essential [42]. Invertibility also
aids in model interpretability by maintaining information throughout the network’s
layers, which can illuminate the model’s decision processes [43]. With these applica-
tions in mind we set we begin with an image, represented as x⃗(t = 0), serving as the
initial condition of our dynamics. This image is allowed to evolve in accordance with
its inherent dynamical laws. Post-training, it is constructively known that the image
concludes its dynamical trajectory at an attractor.

A pivotal question arises at this juncture: Having the output of our classification
algorithm (x(T )), is it possible to reconstruct the originating image (x(0))?

Our findings affirm this possibility. Utilizing a straightforward transformation, τ =
T − t [10, 44], which effectively reverses the dynamics of the system, we can integrate
the dynamics backward and recapture the initial image. The evolutionary law to be
integrated subsequently becomes ⃗̇x = −F⃗ (x⃗), with the derivative now taken concerning
the variable τ .

Figure 3, panel MNIST, visually encapsulates this process. Through a demonstra-
tive cartoon, it illustrates the journey from a starting image from the MNIST dataset
to the recovered image, obtained via the backward dynamic integration. Figure 3,
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panel Fashion MNIST shows, as an example, the invertibility process for a Fashion
MNIST image.
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MNIST Fashion MNIST

⃗·x = ⃗F ( ⃗x)

⃗·x = − ⃗F ( ⃗x)

INPUT: ⃗x(t = 0)

OUTPUT: ⃗x(t = T)
FORWARD: t

OUTPUT: ⃗x(τ = T)

INPUT: ⃗x(τ = 0)

BACKWARD: τ = T − t

⃗·x = ⃗F ( ⃗x)

⃗·x = − ⃗F ( ⃗x)

INPUT: ⃗x(t = 0)

OUTPUT: ⃗x(t = T)
FORWARD: t

OUTPUT: ⃗x(τ = T)

INPUT: ⃗x(τ = 0)

BACKWARD: τ = T − t

Fig. 3: MNIST: The figure delineates the invertibility process deployed within the EODECA model. Given an initial condition x⃗(t = 0), i.e. an image of the MNIST test set, the

dynamical system ⃗̇x = F⃗ (x⃗) evolves to converge onto a designated attractor at a specified time T = 2.7. By implementing a temporal inversion in the dynamics, ⃗̇x = −F⃗ (x⃗), and
initializing the system with x⃗(τ = 0) = x⃗(t = T ), the system endeavors to reconstruct the inaugural image during the inverse operation. The imperfect reconstruction manifested in
the outcome is attributed to numerical errors (loss of information) incurred during integration (forward-backward), utilizing a temporal increment of ∆t = 0.01 in the fourth-order
Runge-Kutta numerical integrator. We adopted for the analysis L = 10. Fashion MNIST: The figure delineates the invertibility process deployed within the EODECA model.
Given an initial condition x⃗(t = 0), i.e. an image of the FASHION MNIST test set, the dynamical system ⃗̇x = F⃗ (x⃗) evolves to converge onto a designated attractor at a specified

time T = 2.0. By implementing a temporal inversion in the dynamics, ⃗̇x = −F⃗ (x⃗), and initializing the system with x⃗(τ = 0) = x⃗(t = T ), the system endeavors to reconstruct
the inaugural image during the inverse operation. The imperfect reconstruction manifested in the outcome is attributed to numerical errors (loss of information) incurred during
integration (forward-backward), utilizing a temporal increment of ∆t = 0.0002 in the fourth-order Runge-Kutta numerical integrator. We adopted for the analysis L = 15.
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Invertibility is indeed a distinctive feature of the EODECA dynamics which could
be eventually exploited to tackle the above mentioned challenges from a newly crafted
perspective.

3 Discussion

EODECA marks a decisive step forward in using dynamical systems theory for robust
classification tasks. The foundation of EODECA is the usage of stable attractors within
the dynamics, ensuring stability and decisiveness in the classification results, which is
particularly resistant to perturbations and noise.

This novel approach integrates the dynamical behavior of the systems into neurons
of a network, where each neuron is subjugated by an ordinary differential equation
(ODE). EODECA’s resemblance to a Recurrent Neural Network (RNN) is profound. It
incorporates an architecture where identical neurons are interconnected consistently,
akin to layers in a deep network. This structure allows for a seamless flow of informa-
tion, with each layer’s state informed by previous states through consistent weights
and connections. By integrating the Euler discretization method, the system described
by ⃗̇x = F⃗ (x⃗) can be transformed into x⃗n+1 = x⃗n + ∆tF⃗ (x⃗n). This transformation
encapsulates the essence of EODECA as a deep RNN, with depth corresponding to
the steps taken in the Euler method for temporal integration.

Within this recurrent framework, the influence of the matrix A is central, guiding
the interaction between neurons from the initial input layer (n = 0) across each iter-
ative layer. This structural element underscores EODECA’s ability to act recursively,
leveraging the Euler integrator to reach the asymptotic state required for classification.

EODECA, in its present configuration, encounters certain boundaries, most appar-
ent when confronting a multitude of classes, where it is imperative to avoid aligning
the dimension of the input with the number of classification categories. Overextend-
ing in this manner leads to a matrix A populated with eigenvalues plummeting
to zero, relegating it to a null matrix and obfuscating its utility. Additionally,
although EODECA aspires to full model interpretability, a significant gap remains in
bridging the optimization problems and phase space contraction, crucial for robust
interpretability.

Looking ahead, the integration of non-linearities like RELU or sigmoid functions
could refine classification performance, warranting further exploration. Moreover, ana-
lyzing the bounds of eigenvalues and eigenvectors could enhance training efficiency
and algorithmic resilience.

In the realm of adversarial perturbations, which seek to undermine algorithmic
integrity, EODECA’s adaptability could play an essential role. Its architecture could
provide a safeguard against subtle adversarial attacks, critical for applications such
as autonomous vehicles where error-proof recognition of road signs is imperative for
safety. As suggested by Eshete [27] and Rudin [18], robust classification is essential to
counteract such threats.

Future research vistas also unfold in the direction of augmenting EODECA’s archi-
tecture, possibly integrating elements akin to Convolutional Neural Networks (CNNs).
Such thoughtful integrations aim to bolster the performance of EODECA, ensuring an
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enhancement in its functionality without compromising its intrinsic interpretability as
a dynamical system.

In conclusion, EODECA is an embodiment of innovation, promising to push the
boundaries of machine learning with its robustness and interpretability as a dynamical
system. It stands as a testimonial of the potential convergence of multiple disciplines,
poised to forge a new horizon in the field. The continuous exploration into EODECA’s
applications and capabilities could lead to significant advancements in technology,
shaping the future of algorithmic classifications and beyond.

4 Methods

4.1 Linear stability

We start with a general description of our analysis, by recalling the equation (1) for
the i-th component of our system:

ẋi(t) = f(xi(t)) + β

N∑
j=1

Aijxj(t). (4)

In the equation above we have defined f(xi(t)) = −4γ(x2
i (t) − a2)xi(t). Now, let

us consider the existence of an eigenvector ϕ⃗
(k)

, associated with the matrix A and

residing in the kernel of A, namely Aϕ⃗
(k)

= 0⃗. Further, we posit that

(
ϕ⃗
(k)

)
i

= ±a.

Hence, ϕ⃗
(k)

is a solution for the above system of ODEs.
In order to investigate the linear stability of the above solution, we introduce a

perturbation δx⃗(t) around ϕ⃗
(k)

. Each perturbed component of x⃗ is defined as follow:

xi(t) = ϕ
(k)

i + δxi(t), with δxi(t) representing a small deviation from the state ϕ
(k)

i .

The model, represented by equation (4), is then linearized around ϕ⃗
(k)

, leading to
the following expression for each component:

δẋi(t) = f(ϕ
(k)

i ) + f ′(ϕ
(k)

i )δxi(t)+

β

N∑
j=1

Aijϕ
(k)

j + β

N∑
j=1

Aijδxj(t) +O(δx2
i (t)),

(5)

where ′ identifies the derivative respect to the variable xi(t). Higher-order terms
in δxi(t) are neglected in this treatment. By utilizing the initial assumptions, i.e.,

f(ϕ⃗
(k)

) = 0⃗ and Aϕ⃗
(k)

= 0⃗, equation (5) can be further simplified to:

δẋi(t) = f ′(ϕ
(k)

i )δxi(t) + β

N∑
j=1

Aijδxj(t) (6)
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To proceed with the linear stability analysis, we aim to express δxi(t) in the basis

of eigenvectors of A. In this context, δxi(t) =
∑

α cα(t)ϕ
(α)
i .

By substituting δxi(t) with the expression above, we obtain an equation for the
evolution of coefficients cα(t). This equation is given by:∑

α

ϕ
(α)
i

{
ċα(t)−

(
f ′(±a) + βλ(α)

)
cα(t)

}
= 0, ∀α. (7)

The condition for a stable solution of the differential equation ċα = (f ′(±a) +

βλ(α))cα is thus provided by λ
(α)
i < 8a2γ

β , ∀α. From the solution of the differential

equation, we can immediately observe that if λ(α) < 8a2γ
β ∀α then ϕ⃗

(k)

is a stable
attractor of the dynamics, meaning that perturbations decay exponentially with time.

Conversely, if there exist at least one λ(α) > 8a2γ
β then ϕ

(k)

i the fixed point becomes
unstable, as well as the whole attractor, as a small perturbation grows exponentially
with time. This allows us to constrain the eigenvalues of the matrix A to only be in

the range (−∞, 8a2γ
β ).

In computational realms, we often encounter functions characterized by steep
slopes, indicating rapid changes over minuscule intervals. One prominent exemplar is
our V (x⃗(t)). As time progresses, the evolution of our system can cause x⃗(t) to undergo
swift and, at times, extreme fluctuations. Such abrupt variations might thrust x⃗(t)
into zones where V (x⃗(t)) loses numerical stability. To counteract this, we employ a
safeguard: each component, xi(t), of x⃗(t) is meticulously clipped within the bounds of
[−La,La], where L can be chosen by the costumer. This measure ensures that x⃗(t)
consistently operates within numerically stable territories for ∇V (x⃗(t)).

In conclusion, we have examined the linear stability of our model, grounded in
assumptions regarding the eigenvectors of the matrix A and the properties of pertur-
bations around stable equilibrium points. The final stability condition yields an upper
limit for the eigenvalues λi, ensuring the system maintains a stable solution over time.

4.2 Training

Under the above conditions on the stability, we can construct the matrix A by setting
the eigenvectors associated with the attractors in the columns of the matrix Φ and
the corresponding eigenvalues in Λ to zero. All columns of Φ that do not correspond
to planted attractors are initialized randomly. Similarly, the eigenvalues of A are
also initialized randomly, but they must satisfy the constraints described above. It is
essential to highlight that, since the planted eigenvectors are by definition in the kernel
of A, they can also be constructed as linear combinations of orthonormal vectors of
the kernel of A.

Without loss of generality, we fix the parameters a at 0.5 and let γ be tunable.
Given the inherent challenges in manual selection of the matrix Φ and the Λ weights not
associated to planted attractors, achieving accurate classification becomes a daunting
task. Therefore, to empower our network with the ability to classify effectively, we
resort to a learning methodology.

Moving onto the model training, the learnable parameters encompass the unplanted
eigenvectors of Φ. The eigenvalues of Λ corresponding to these columns are also
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included, while those corresponding to the dynamics’ stable points are set to zero
by construction and they are fixed during the training process. The parameter space
for optimization resides in R((N−K)×(N−K))+N−K+1, where K denotes the number
of classes in our classification problem, and the singular dimension relates to the
parameter γ.

The objective is to minimize the loss function L = 1
B

∑B
j=1(x⃗

∗(j) − y⃗(j))T (x⃗∗(j) −
y⃗(j)), with B as the size of the sample. x⃗∗ is the value of x⃗∗ = x⃗(T ), when T is large
enough, i.e. the dynamical system in (1) reaches its stationary state. In practice, we
take a dataset D = (x⃗, y⃗)(j)∈[1,...,|D|] of size |D|, where x⃗(j) is an input datum, and

y⃗(j) represents the target, mapped into one of our attractor ϕ⃗
(k)

of the dynamics
(with k = 1, . . . ,K). These are sampled i.i.d. from their joint distribution P(x⃗, y⃗).
This dataset is then split into training and test sets. In other words, we give as initial
condition to our dynamical system the input datum, i.e., x⃗(0) = x⃗(j), and we let evolve
the system for large enough a time T . Reached the time T , the value of x⃗∗(j) = x⃗(j)(T )
is used for optimizing the loss function. The optimization process can be facilitated
using a simple algorithm, for which we opt for Stochastic Gradient Descent (SGD), i.e.
Adam [45]. Once optimal weight configuration is attained via SGD, we can proceed to
evaluate the dynamical system’s performance for classifications on test set elements.
Importantly, these test set elements are a subset of the dataset D that the system
has never encountered during the training process. All numerical integrations for our
dynamical process were carried out using the fourth-order Runge-Kutta method [46].
This method is employed for its precision, having a truncation error of O(∆t4), where
∆t is the time step of the integration. However, Euler discretization [46], can also be
used during training, achieving comparable performance for all trained models. We
recall that the Euler truncation error is O(∆t). Unless explicitly stated otherwise, the
fourth-order Runge-Kutta method is implied throughout the manuscript. The time
step, ∆t, utilized for the integration was set at 0.1, while the time of integration T
was set to 5.5.

In the methodology of our study, we incorporated an element of noise during the
training phase to rigorously assess the robustness of our model. As detailed in Sec. 4.3,
our training dataset was intentionally corrupted with uniform noise, a strategy metic-
ulously crafted to simulate a range of potential disturbances and uncertainties, thereby
enhancing the model’s resilience and adaptive capacities. This deliberate induction
of noise is parameterized by ϵtrain, a variable that quantifies the level of corruption
infused into the model during the training process.

For our analyses, presented in the Sec. 2, we utilized test sets subject to variable
levels of corruption to scrutinize the model’s performance and reliability under diverse
conditions. The magnitude of the noise introduced in this phase is denoted by ϵtest,
serving as a metric to gauge the extent of deviation introduced into the test set dur-
ing the evaluative analysis. This systematic approach, underscored by clearly defined
parameters, facilitates a comprehensive and nuanced understanding of the model’s
robustness and adaptability in navigating and mitigating the impact of noise during
its operational functionality.
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4.3 Letter dataset

In this section, we describe the synthetic dataset, designed using binarized charac-
ters, with values {0, 255} on each pixel, to match the specificities of our experimental
needs. To the best of our knowledge, such a dataset bridges the dichotomy of sim-
plicity and richness. It not only enables low computational overhead but also morphs
into a complex repository when noise elements are introduced. Each character in this
curated collection is encapsulated within a 7× 7 pixel grid depicted in grayscale. This
framework ensures the dual advantage of safeguarding essential geometric intricacies
and facilitating computational efficiency.

Appreciating the seldom pristine nature of data in real-world settings, we have
integrated uniform noise into arbitrary pixels, thereby mirroring practical scenarios
and endowing the dataset with layers of realistic complexity. By adjusting the noise
parameter ϵ ∈ [0, 1], we wield control over its intensity, setting the stage for systematic
inquiries into the model’s resilience against noise. Quantitatively, the number of ran-
dom corrupted pixels, represented as ζ, is deduced as ζ = ϵ×N , where N denotes the
totality of pixel constituents in an image. The noise on each chosen pixel is uniformly
sampled from [0, 255]. This methodology yields an intensive parameter, steadfast even
as N approaches infinity, underpinning the scalability of our findings. An illustrative
snapshot of this model is presented in Fig. 1, panel a. This visual representation unfurls
the initial five letters of the alphabet A − E structured within a 7 × 7 grid layout.
The topmost row delineates the pristine, noise-void version of the letters. In contrast,
the intermediate row paints these letters, albeit with an overlay of noise, marked by a
factor ϵ = 0.2, inducing discernible perturbations. The concluding row represent the
target visualizations for every individual letter. Such a portrayal promotes a side-by-
side juxtaposition between the archetypal, noise-tainted, and target avatars of each
letter, offering readers a comprehensive insight into the transformation spectrum, of
our K = 5 classification problem.

4.4 Perturbations of coefficients in an image

An image, or vector x⃗, can be expressed as the product of the matrix Φ and the
coefficient vector c⃗, as outlined in Sec. 2.1. A central question is whether certain coeffi-
cients withstand perturbations and the extent of perturbation they can tolerate before
the trained model can no longer correctly classify such images. Essentially, we aim
to understand a model’s robustness in light of variations in the c⃗ coefficients of the
provided input image. Moreover, we sense the size of the basins of attraction, post
training, by using a correlated version of noise that is self-consistently shaped by the
learning protocol. To delve into this, following common approaches across various dis-
ciplines, we perturb one coefficient at a time. This allows us to identify coefficients
that may be inherently more robust than others. Fig. 4 displays this analysis in 3D:
it examines the robustness of each image coefficient against a Gaussian perturbation
N (0, σ) applied individually. The MSE, calculated in a steady state, serves as a bench-
mark metric. We observe that, for a model trained with ϵtrain = 0.3, many coefficients
are resilient to individual perturbations. This hints at the potential to explore multiple
and cumulative perturbations, as depicted in Fig.5. The provided figure highlights in
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Fig. 4: In the three-dimensional figure presented, the x-axis delineates the variance,
σA, of the Gaussian perturbation applied to a specific component of the coefficient vec-
tor c⃗(A) corresponding to the A letter, the y-axis displays the index j of the perturbed
component from the vector c⃗(A), and the z-axis represents the sample Mean Squared
Error (MSE) value. Notice that the original image can be written as x⃗(A) = Φc⃗(A),
where Φ signifies the transformation matrix. Consequently, by leveraging the inverse
of Φ, we can derive the coefficient vector c⃗(A). In this representation, we introduce
a perturbation exclusively to one component of the vector c⃗(A) at a given instance
and compute the corresponding MSE. The indices on the y-axis are systematically
arranged based on the ascending magnitude of the MSE, thereby illustrating the dif-
ferential impact of perturbations across various components of c⃗(A) on the overall error
in the reconstructed image. We adopted for the analysis L = 2.

fact the robustness of different dynamical models, each trained with a specific ϵtrain,
against accumulated perturbations on a fraction of coefficients. The main objective of
this representation is to determine the threshold beyond which the cumulative effect
of these perturbations impairs the accurate classification of a reconstructed image,
particularly referring to the amplitude of the perturbation, explicitly its Gaussian vari-
ance, for MSE values below 5%. From an initial analysis, it is clear that in the absence
of perturbations, all coefficients naturally appear robust. However, introducing noise
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Fig. 5: The figure illustrates the fraction of components that cannot be cumulatively
added due to perturbations on each individual component, in relation to the ampli-
tude of the perturbation, specifically the variance of the Gaussian, for MSE values less
than 5%, for the letter A. The primary objective is to ascertain the threshold beyond
which the cumulative effect of these perturbations impedes the accurate classification
of a reconstructed image. This behavior is depicted across various ϵtrain values, repre-
senting models trained with different noise levels. A discernible observation from the
figure suggests the existence of an optimal noise level up to which the perturbations
remain inconsequential for the classification task. In this specific instance, the optimal
value is identified as ϵtrain = 0.3. We adopted for the analysis L = 2.

significantly alters this stability perception. For instance, with ϵtrain = 0.0, a moder-
ate perturbation (equivalent to σA = 0.1) affecting 63% of the coefficients results in a
significant MSE increase, pushing it beyond the 5% threshold. In contrast, this behav-
ior is attenuated or, in some cases, nearly absent in models trained with ϵtrain > 0.0.
A crucial observation clearly emerges from the figure: there exists an optimal noise
level up to which perturbations remain essentially inconsequential for the classifica-
tion task. In this particular instance, the optimal value is pinpointed as ϵtrain = 0.3.
This suggests that training with images subjected to a certain noise level might indeed
bolster the resistance of coefficients against various perturbations.

4.5 Comparison with literature MNIST and Fashion MNIST

Moving forward with our comparative analysis, the EODECA method, intrinsically
interpretable as a dynamical system, holds a distinctive edge over other interpretable
methodologies currently documented in literature. As an illustrative benchmark, the
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MNIST dataset has been subjected to various analytical techniques, including the
Hopfield model, both with and without the dreaming approach [47, 48]. However,
these methods have, at best, reached performance metrics below the 70% threshold,
and with a supervising approach, where it is turned Hebb’s into a genuine learning
rule, can reach a 94% of accuracy. Furthermore, when MNIST was probed using a
restricted Boltzmann machine, even with the incorporation of dreaming strategies,
the performance consistently lingered below 75% [49]. Such comparisons underline
a salient observation: our approach, despite its elemental nature relative to other
proposals in the literature, emerges not only as the most parsimonious but also as the
most efficacious. This duality of simplicity and performance underscores the promising
potential of our proposed dynamical system in the realm of interpretable machine
learning.

For the Fashion MNIST dataset, when contextualizing our findings with the liter-
ature, the comparative strengths of our model become apparent. The Hopfield Model,
even when enhanced with strategies like dreaming, achieves a performance just shy of
63%, with a supervising approach, where it is turned Hebb’s into a genuine learning
rule, it can reach the 84% [49]. This is noteworthy when juxtaposed with our model’s
87.01% accuracy. Our approach not only outperforms the Hopfield Model but does so
with a more streamlined and simpler structure. This underscores the efficiency and
potential of our system in relation to established methods.
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