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ABSTRACT

The recent extension of the Hubble diagram of supernovae and quasars to redshifts much higher than 1 prompted a revived interest
in nonparametric approaches to test cosmological models and to measure the expansion rate of the Universe. In particular, it is of
great interest to infer model-independent constraints on the possible evolution of the dark energy component. Here we present a
new method, based on neural network regression, to analyze the Hubble diagram in a completely nonparametric, model-independent
fashion. We first validated the method through simulated samples with the same redshift distribution as the real ones, and we discuss
the limitations related to the “inversion problem” for the distance-redshift relation. We then applied this new technique to the analysis
of the Hubble diagram of supernovae and quasars. We confirm that the data up to z ∼ 1−1.5 are in agreement with a flat Λ cold
dark matter model with ΩM ∼ 0.3, while ∼5-sigma deviations emerge at higher redshifts. A flat Λ cold dark matter model would still
be compatible with the data with ΩM > 0.4. Allowing for a generic evolution of the dark energy component, we find solutions that
suggest an increasing value of ΩM with redshift, as predicted by interacting dark sector models.
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1. Introduction

The Hubble diagram (i.e., the distance-redshift relation)
describes the expansion of the Universe with time and is one
of the fundamental tools of observational cosmology. The “kine-
matic” information encoded in this diagram includes the Hubble
parameter H0 (from the first-order derivative at redshift z = 0)
and the acceleration parameter (from the second-order deriva-
tive). When a dynamical model is adopted, its physical parame-
ters can be derived from the fit of the Hubble diagram. Typical
examples are the estimate of the matter density at z = 0, ΩM,
within a flat Λ cold dark matter (CDM) model, or the evalua-
tion of ΩM and ΩΛ within a non-flat ΛCDM model. Moreover,
the physical meaning of the relevant parameters to some extent
reflects the chosen model. Likewise, the obtained numerical esti-
mates are also model-dependent: if we assume, for example, that
data follow a ΛCDM model, with prescribed ΩM and nonzero
curvature, it is easy to demonstrate through numerical simula-
tions that, if a flat ΛCDM is adopted, the best-fit value of ΩM
will be different from the correct (simulated) one.

In the past few years, possible new physics beyond the
flat ΛCDM model has been suggested by several observational
results, such as the mismatch between the direct measurements
of H0 in the local Universe (Riess et al. 2019; Wong et al. 2019)
and the extrapolations based on the cosmic microwave back-
ground, the comparison between the high- and low- multipole
spectra of the cosmic microwave background (Di Valentino et al.
2021), and the tension between the power spectrum of den-
sity perturbations measured on different scales (Macaulay et al.
2013; Battye et al. 2015; Lin & Ishak 2017; Heymans et al. 2021;

Nunes & Vagnozzi 2021). Recently, a significant deviation from
the flat ΛCDM model has been observed in the Hubble dia-
gram at high redshifts, an area populated with quasars and γ-
ray bursts: while no significant tension is found at z < 1.5
with supernovae, quasars, or γ-ray bursts, the data at z > 1.5
suggest a slower expansion of the Universe than predicted by
the flat ΛCDM model (Risaliti & Lusso 2019; Demianski et al.
2017; Lusso et al. 2019, 2020). These results make it particu-
larly important to analyze the Hubble diagram in a way that
is as model-agnostic as possible, in order to obtain an “abso-
lute scale” for the comparison with specific models, and to
infer the global, “cosmographic” properties of the expansion,
which, in turn, could suggest the optimal class of model to fit to
the data.

Cosmographic expansions (Aviles et al. 2014; Capozziello
et al. 2020; Bargiacchi et al. 2021) represent a viable approach
to achieving this goal. The method is based on a standard fitting
procedure and assumes that observational data can be interpo-
lated by an appropriate series of functions, truncated to include
a limited number of terms (and hence a limited number of free
parameters). While this is not dependent on a specific physical
model, it still relies on the flexibility of the chosen functions
to reproduce the shape of the observational Hubble diagram.
Moreover, cosmographic techniques are rigorously valid only
within a convergence radius, which is z = 1 for standard meth-
ods (Cattoën & Visser 2007). At higher redshifts, no method has
an absolute validity based on mathematical principles, and the
effectiveness of the cosmographic analysis relies on the similar-
ity between the chosen expansion functions and the actual shape
of Hubble diagram.
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An example of a robust, well-checked, nonparametric
approach is that based on Gaussian process (GP) regression
(Holsclaw et al. 2010; Seikel et al. 2012; Shafieloo et al. 2012),
which has been used to test the hypothesis of a constant den-
sity of the dark energy term (i.e., the cosmological constant Λ).
Despite their flexibility, however, GPs may underestimate the
error associated with predictions (Colgáin 2021) and come with
an intrinsic convergence problem for z > 1.

Starting from these premises, we here propose, and con-
sequently apply, a novel analysis framework for the Hubble
diagram based on neural network (NN) regression (see
Dialektopoulos et al. 2022 for a similar approach). Deep feed-
forward fully connected NNs are well-known universal approx-
imators. Their ability to represent functions extends far beyond
what is required for the particular problem at hand. However, the
core of their efficacy lies in the assumption that the proper regres-
sion function results from a collection of several multilevel hier-
archical factors (or features) that could enable one to account for
unknown features in the analysis that bear – at least some – cos-
mological relevance. To sum up, we try to merge the concept of
features with cascading relevance appropriate for cosmographic
expansion with the need for convergence and the high-function
representation capabilities typical of kernel methods or GPs.

We first describe the method and check its reliability with
simulated data sets. Then we apply it to a Hubble diagram at
high redshifts, showing a high-redshift inconsistency with the
ΛCDM model. Finally, we speculate on the class of model that
could fix the discrepancy.

2. The cosmological background

In a Friedmann–Robertson–Walker Universe, the luminosity dis-
tance of an astrophysical source is related to the redshift through
the equation

dL =
c (1 + z)

H0
√
−ΩK

sin
(√
−ΩK

∫ z

0
dz′

H0

H (z′)

)
, (1)

where H(z) is the Hubble function and ΩK stands for the curva-
ture parameter, defined as ΩK = 1 −

∑
i Ωi, with Ωi represent-

ing the density of the constituents of the Universe, normalized
to the closure density. In the simplest form – assuming a flat
Universe, a constant total content of matter in the Universe,
and a cosmological constant and considering the redshift range
where standard candles are observed (i.e., z < 7, where the
contribution of the radiation and neutrino terms is negligible)
– H (z) = H0

√
ΩM (1 + z)3 + 1 −ΩM. However, a wide range of

different physical and cosmological models have been consid-
ered in the literature, including a nonzero curvature, an evolving
dark energy density, and/or interactions between dark energy and
dark matter. In this work, we analyze a subset of these models,
represented by the equation

H (z) = H0

√
ΩM (1 + z)3 + (1 −ΩM) e3

∫ z
0

1+w(z′)
1+z′ dz′ , (2)

where w(z) is a generic redshift evolution of the dark energy
component density. Our main goal is to test the consistency of
the flat ΛCDM hypothesis (which amounts to setting w = −1
in Eq. (2)) with the present Hubble diagram of supernovae and
quasars, and draw a comparison with other possible functional
forms for w(z), as proposed in the literature. To this aim, we car-
ried out a nonparametric fit via a suitably designed NN. This
enabled us to reach conclusions on the predicted profile of w(z)
without relying on any a priori assumption.

One key problem in any nonparametric reconstruction
attempt is the so-called inversion problem: it is easy to demon-
strate that the inversion of Eq. (2), which involves the first and
second derivatives of H(z) (see, e.g., Seikel et al. 2012), is inher-
ently unstable, due to a strong dependence on the ΩM and H0
parameters; in particular, a change in the quantity H2

0ΩM by as
little as 0.1% can alter the predicted value of w(z) by orders of
magnitude and/or flip its sign. As a consequence, constraints on
w(z) at very low redshifts can be obtained, but the uncertainties
become very large beginning at z ∼ 0.5. This makes it difficult to
reach hard conclusions about the supposed consistency of avail-
able data with the reference scenario with w = −1. In principle,
better data could help reduce the uncertainties. While we will
discuss this issue in more detail in a dedicated paper, here we
just mention the relevant point for the present work: it is not pos-
sible to obtain significant information on w(z) from the Hubble
diagram without (a) assuming some analytic form of the func-
tion and/or (b) having a combined estimate of ΩM and H0 with
a much higher precision than what is available today and in the
foreseeable future. There are only two possible direct ways to
overcome this limitation: either we restrict our analysis to very
narrow ranges of the parameters, or we constrain the shape of
the function w(z). Since neither of these approaches is satisfac-
tory (and both have already been explored in the literature), we
chose a different strategy. We did not attempt to carry out a full
inversion of Eq. (2). On the contrary, we overcame the aforemen-
tioned numerical problems by estimating the quantity

I (z) =

∫ z

0

w (z′) + 1
1 + z′

dz′, (3)

which can be determined from the observational data by solely
invoking the first derivative of H(z) (see Cárdenas 2015 for an
early application of this technique). We notice that within the
ΛCDM model, w = −1 implies I(z) = 0. As an obvious limita-
tion, we will just recover the integral of the physical quantity of
interest, the function w(z): the degeneracy on w(z) implies that
different forms of w(z) lead to indistinguishable shapes of I(z).
Nonetheless, we can achieve some remarkable results. First, we
can compare the results on I(z) with the prediction of the flat
ΛCDM model: an inconsistency here would be powerful and
general proof of a tension between the model and the data (note
that the opposite is not true: an agreement based on the analysis
of I(z) does not necessarily imply an invalidation of the ΛCDM
model). More generally, we can explore the family of w(z) func-
tions that lead to the observation-based reconstruction of I(z)
to determine which class of physical model can reproduce the
observed Hubble diagram.

3. Regression via deep neural networks

For our purposes we have chosen to deal with a fully con-
nected feed-forward architecture, as illustrated in the supple-
mentary information (SI) Appendix B. Function (3) is hence
approximated by a suitable NN, denoted as INN, to be determined
via the following apposite optimization procedure. After a few
manipulations, as detailed in the SI, the data set takes the form
D = {(z(i), y(i),∆y(i))} with i ∈ 1 . . . |D|, where y(i) is connected to
the modulus of luminosity distance, d(i)

L , and ∆y(i) stands for the
associated empirical error. The predictions, y(i)

pred, and the sup-
plied input, y(i), are linked via

y(i)
pred =

∫ z(i)

0
dz′

[
ΩM

(
1 + z′

)3
+ (1 −ΩM) e3INN(z′)

]− 1
2 . (4)
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We note that the prediction is a functional of INN, the NN
approximation that constitutes the target of the analysis. To
carry out the optimization, we introduced the loss function

L(INN,D) =
∑|D|

i=1

(
y(i)−y(i)

pred

∆y(i)

)2

. The weights of the network that

ultimately defines INN are tuned so as to minimize the above
loss function via conventional stochastic gradient descent (SGD)
methods. The hyperparameters were optimized with mock data
samples, as illustrated in the SI. To quantify the statistical errors
∆ypred (associated with the predictions) and ∆INN (referring to
the approximating NN), we implemented a bootstrap procedure,
which is detailed in the SI. The code is freely available online1.

This regression scheme was tested against a selection of
mock data samples. In carrying out the test we considered:

(A) A sample of 4000 sources with no dispersion, with
a flat distribution in log(z) between z = 0.01 and z = 6,
and following a flat ΛCDM model with ΩM = 0.3 and h =
H0/(100 km s−1 Mpc−1) = 0.7. This sample (as well as the next
on the list) represents a highly idealized, hence unrealistic, set-
ting. It is solely used as a reference benchmark model for pre-
liminary consistency checks.

(B) The same as above, but the model used is a Chevallier–
Polarski–Linder (CPL) parametrization, which assumes a dark
energy equation of state that varies with the redshift as w(z) =
w0 + wa

z
1+z (Chevallier & Polarski 2001), with w0 = −1.5 and

wa = 0.5. We note that this choice of the parameters would
be hard to justify from a physical point of view. In particular,
it implies a turning point in the Hubble parameter H(z), which
violates the null-energy condition. However, even if this scenario
can be considered unphysical, it serves our purpose of testing our
regression method with extreme models.

(C) A sample with the same size, redshift distribution, and
dispersion as the Pantheon supernova Ia sample (Scolnic et al.
2018), assuming a flat ΛCDM model with ΩM = 0.3.

(D) A Pantheon-like sample, as above, but assuming a CPL
model with w0 = −1.5 and wa = 0.5.

(E) A sample with the same size and redshift distribu-
tion as the combined Pantheon (Scolnic et al. 2018) and quasar
(Lusso et al. 2020) samples. The quasar sample consists of
2244 sources with redshifts in the z = 0.5−7.5 range (the whole
Lusso et al. 2020 sample contains 2421 objects, but the 178 ones
at redshift z < 0.5 are not considered in this analysis). We
assumed the same dispersion as in the real sample and a flat
ΛCDM model with ΩM = 0.3.

(F) The same as setting (E) but assuming a CPL model with
w0 = −1.5 and wa = 0.5.

More specifically, we generated synthetic data following
these different recipes. The regression scheme, as implemented
via the NN, enables us to solve an inverse problem, from the
data back to the underlying physical model. The correspondence
between postulated and reconstructed physical instances read-
ily translates to a reliable metric for gauging the performance of
the proposed procedure, in a fully controllable environment and
prior to being applied to the experimental data set. The analy-
sis of settings A and B is discussed in the SI and confirms that
our NN method can consistently recover the “true” model and
parameters with simulated data of (unrealistic) high quality.

The outcome of the analysis for settings C (top left), D (top
right), E (bottom left), and F (bottom right) is displayed in Fig. 1.
Both INN(z) (the NN approximation for I(z)) and ypred(z) are rep-
resented as a function of the redshift, z. For settings E and F,

1 https://github.com/Jamba15/Cosmological-Regression-
with-NN.git

the associated mean loss is also plotted against the parameter
ΩM, which can be freely modulated to explore different sce-
narios. Working with a data set of type C cannot yield definite
conclusions: the NN is unable to recover the correct value of
ΩM because different ΛCDM models (INN(z) ' 0, within the
explored range) provide an equally accurate interpolation of the
(simulated) data within statistical errors. The above degeneracy
is, however, removed when extending the examined sample so
as to include quasars (see the bottom-left panel of Fig. 1, which
shows data set E). In this case, the minimum displayed by the
loss function points to ΩM = 0.3, the value assumed in the
simulations; the corresponding function INN(z) is approximately
equal to zero (green shadowed domain) within the errors, which
is at variance with what is found by employing the other cho-
sen values of ΩM. Data sets D and F (rightmost panels in Fig. 1)
return similar conclusions when operating with data generated
according to a CPL prescription. Working with supernovae (over
a limited range in z) does not allow us to distinguish between the
ΛCDM and CPL model, while the underlying model, assumed
for data generation, is correctly singled out when quasars are
accounted for (green shadowed region that encloses the dashed
line, which represents the exact profile), that is, when extend-
ing the data set to higher redshifts. Overall, our results from
working on synthetic data suggest that (a) the regression method
is reliable and (b) with the current Hubble diagram of super-
novae, it is not possible to test the ΛCDM model against possi-
ble extensions, such as the CPL model with “phantom-like” dark
energy. Such a degeneracy is removed with a combined super-
nova+quasar sample extending up to z ∼ 7.

Motivated by the outcome of these simulations, we applied
the NN to the experimental data set consisting of the Pantheon
supernova sample and the Lusso et al. (2020) quasar sample. The
quasar luminosity distances and their errors are estimated from
the observational data (X-ray and UV fluxes) following the pro-
cedure described in Lusso et al. (2020). In summary, the X-ray
and UV data are first fitted in narrow redshift bins in order to
derive a cosmology-independent slope, α, of the X-ray to UV
relation. This value and its uncertainty are used to derive lumi-
nosity distances on an arbitrary scale. The absolute calibration,
β, was obtained from the cross-match of the quasar and super-
nova sample in the common redshift interval. This calibration
has a negligible uncertainty with respect to the other components
on the error on the luminosity distances: the flux measurement
errors, the intrinsic dispersion of the relation, and the error on the
slope. In principle, rather than fitting the so-derived luminosity
distances, it would be preferable to use the observables (i.e., the
fluxes) and to marginalize over the parameters α and β. In prac-
tice, the two methods provide identical results, and the use of
luminosity distances and Eq. (4) makes the analysis much faster
and easier to implement within a NN method.

The results of the NN-based fits are shown in Fig. 2. The
shape of I(z) is clearly not consistent with the flat ΛCDM model
(I(z) ≡ 0). This is the main result of our work, which we arrived
at without assuming any a priori knowledge on the function I(z).

As a next step, we introduced a dedicated indicator to quanti-
tatively measure the compatibility of the examined data with the
reference ΛCDM model. We naively accessed the distance of
the fitted profile, ypred, to the reference yΛCDM (I = 0) curve and
divided it by the error associated with the fitted function ∆ypred.
Assuming that the computed ratio (averaged over z) is smaller
than the unit, the distance between ypred and yΛCDM is eclipsed
by statistical uncertainty and thus ΛCDM cannot be ruled out as
a candidate explanatory model. The above procedure has been
verified (see the SI) and yields a scalar indicator that fulfills the
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Fig. 1. I(z) Results of the NN analysis of the Hubble diagram of simu-
lated data. Top left: data set C, with the same redshift distribution and
dispersion as the Pantheon supernova sample. Bottom left: data set E,
where combined Pantheon and quasars are considered. In this case, the
NN is able to identify the model assumed for data generation (the green
shadowed region contains the exact profile for INN(z), depicted with a
dashed line). The corresponding loss function is also shown and dis-
plays a minimum at the correct value of ΩM. Top right: Pantheon-like
sample assumed for a CPL generative model (data set E). The NN is
unable to distinguish between different scenarios (ΛCDM vs. CPL).
Bottom right: CPL model with the inclusion of quasars. The degener-
acy is resolved, and the NN can correctly identify the underlying model
(see the dashed line). The loss shows a minimum for the correct value
of ΩM, which yields the green shadowed solution for INN(z) vs. z.

purpose of quantifying the sought distance, normalized to the
associated error. This is denoted by ∆ΛCDM and takes the form

∆ΛCDM(D, INN) =
1
|D|

∑
i∈D

δyΛCDM
pred (INN; z(i))

∆ypred(INN; z(i))
. (5)

The fitted integral function INN is deemed compatible with the
ΛCDM model if ∆ΛCDM < 1. When this condition holds true, the
predictions deviate from ΛCDM by an amount that, on average,
is smaller than the corresponding prediction error. The indicator
in Eq. (5) was computed for different mock samples, mimick-
ing ΛCDM, with progressively increasing errors sizes, ∆y. This
error size is assumed uniform across data points and varied from
zero to 0.15, thus including the value that is believed to apply to
real data: ∼0.14. This information is used as a reference bench-
mark to interpret the results of the analysis for the Pantheon +
quasar experimental data set. To sum up our conclusions (see
the SI), the portion of the data set at low redshifts is compatible

Fig. 2. Results of the NN analysis of the Hubble diagram of super-
novae (blue points in the middle panel) and quasars (red points). Top
panel: estimated values of I(z) for different values of ΩM. Central panel:
Hubble diagram with the reconstructed best-fit function obtained from
the NN analysis. Bottom panel: Loss values for different values of ΩM.
Notice that the solution visually closer (accounting for statistical errors)
to the reference ΛCDM profile yields a significantly larger loss value
and, as such, should be disregarded. The Loss is indeed nearly flat for
ΩM < 0.3.

with a ΛCDM model with Ωm = 0.3, within statistical errors.
Conversely, for z > 2 (notably quasars), ∆ΛCDM, as computed
after available experiments, is 5σ from the expected mean value.
Hence, accounting for quasars enables us to conclude that the
ΛCDM model is indeed extremely unlikely.

Figure 3 depicts the results where the best-fit I(z) for ΩM =
0.3 (the same as in the upper panel of Fig. 2) is plotted in log-
arithmic scale and compared to IMATTER(z) = log(z), the func-
tion obtained from Eq. (3) by assuming w(z) ≡ 0 (i.e., a pure
matter contribution). We recall that a cosmological constant,
or equivalently a dark energy component with constant energy,
implies w(z) ≡ −1 and I(z) ≡ 0. It is therefore tempting to
speculate as follows when qualitatively analyzing the profile of
I(z): the redshift intervals with negative derivative represent a
dark energy component with density increasing over time (the
“phantom” dark energy scenario); the intervals with positive
derivatives, smaller than the constant derivative of IMATTER(z),
represent a dark energy component with decreasing density; last,
the intervals where the derivative is larger than that displayed by
IMATTER(z) are matter terms, with increasing density. The prior-
free NN solution suggests therefore an “interacting dark sector”
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Fig. 3. Best-fit I(z) from our NN regression (as in the upper panel of
Fig. 2) in logarithmic scale, compared with the function IMATTER(z)
obtained by assuming w(z) ≡ 0 in Eq. (3). The redshift intervals where
the derivative of I(z) is higher than that of IMATTER(z) represent “matter-
like” contributions, while intervals with a lower derivative refer to
energy-like contributions.

scenario, where a matter component decreases with time and,
correspondingly, a dark energy component rises. This interpreta-
tion is also consistent with the nearly constant loss function for
ΩM < 0.3: choosing values larger than 0.3 worsens the agree-
ment because this amounts to overestimating the total matter
component at z ∼ 0. Values smaller than 0.3 can be compen-
sated for by the matter component in I(z). This interpretation is
consistent with recent claims of an increasing value of ΩM with
redshift within a ΛCDM scenario (e.g., Colgáin et al. 2022).

4. Conclusions

Our conclusions are multifold. We have proposed and rigor-
ously tested a NN approach for analyzing the Hubble diagram.
The NN model-agnostic regression of the combined supernova
and quasar catalog enables us to unequivocally reveal a strong
tension with the “concordance” flat ΛCDM model. Finally,
the analysis we carried out with the proposed NN approach

suggests an “interacting dark sector” scenario, where a dark mat-
ter component flows into dark energy, at least down to redshifts
z ∼ 1.5.
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Appendix A: Data processing

Data come as a setD = {(z(i), y(i),∆y(i))}, with i ∈ 1 . . . |D|. Each
y(i) component is linked to dL, the physical quantity of interest, as
y(i) = 5 log(d(i)

L /10pc). The first applied transformation is defined
as follows:

y′(i) = y(i)/5 + 1, ∆y′(i) = ∆y(i). (A.1)

As such, data are traced back to the logarithm of the luminosity
distance; every entry of the inspected data set is equal to
y(i) = log(d(i)

L ).

Carrying out a first-order expansion of Eq. (1) in the main
body of the paper, assuming a flat Universe (Ωk ∼ 0) and
inserting the expression of H(z) as reported in the main text,
yields

dL = α(z)
∫ z

0
dz′

[
ΩM

(
1 + z′

)3
+ (1 −ΩM) eI(z′)

]− 1
2 , (A.2)

where α(z) =
c(1+z)

H0
. We proceeded by setting

y′′(i) = y′(i) − log(α(z(i))), ∆y′′(i) = ∆y′(i). (A.3)

It is worth noting that the relative errors associated with c, z, and
H0 are negligible. Relation A.3 transforms into

y′′′(i) = 10y
′′(i)
, ∆y′′′(i) = 10y

′′(i)
∆y′′(i). (A.4)

To simplify the notation, we drop the apex by setting y′′′ →
y and obtain the sought connection between every y(i) and the
function to be fitted I(z), namely

y(i) =

∫ z(i)

0
dz′

[
ΩM

(
1 + z′

)3
+ (1 −ΩM) eI(z′)

]− 1
2 . (A.5)

We point out that since arg minx f (x) = arg minxC · f (x),
every manipulation that results in a constant factor in front of
the loss function can be ignored. This is the case of every opera-
tion in the form of ∆y(i)

new = C · ∆y(i)
old, which, indeed, results in a

factor
1

C2 in front of the loss function (see Eq. (C.1)).

Appendix B: The employed neural network model

To approximate the nonlinear scalar function I(z) : z ∈ R 7→
I(z) ∈ R, we made use of a so-called feed-forward architecture.
The information flows from the input neuron, associated with
z(i), to the output neuron, where the predicted value of INN(z(i))
is displayed.

The transformation from layer k to its adjacent homolog, k +
1, following a feed-forward arrangement, is characterized by two
nested operations – (i) a linear map W (k) : RNk → RNk+1 and (ii)
a nonlinear filter σ(k+1)(·) – applied to each entry of the obtained
vector. Here k ranges in the interval 1 . . . `, where N1 = 1 and ` is
the number of layers (i.e., the depth of the NN). We have chosen
σ(k) := tanh for all k < ` − 1, whereas σ(`) = I.

The activation of every neuron in layer k can be consequently
obtained as

x(k) = W (k−1)(. . . σ(W (2)(σ(W (1)z))) . . . ).

Furthermore, we fixed Nk = Nk+1 ∀k ∈ 2 . . . ` − 2, meaning that
every layer (except the first and the last) has the same size as the
others. The size of the so-called hidden layer, N2, and the total

amount of layers, `, are, consequently, the only hyperparameters
to eventually be fixed.

Occasionally, a neuron-specific scalar, called bias, can be
added after the application of each linear map, W (k). To allow
for the solution INN(0) = 0 to be recovered, we set the bias to
zero.

The output INN(z) hence depends on N =
∑`−1

k=1 Nk × Nk+1

free scalar parameters (the weights W (k)
i, j , i ∈ 1 . . .Nk+1 j ∈

1 . . .Nk, k ∈ 1 . . . ` − 1), which constitute the target of the opti-
mization.

Appendix C: Model optimization

The optimization described in this section was carried out by
using parallel computing on GPUs (Liaw et al. 2018) and the
minimization of the loss function as defined in the main text
was performed via a variant of the SGD method, recalled below.
First, data setD is shuffled and divided into smaller subsets, Bi,
of size | Bi | = β. These are the batches, and they meet the follow-
ing condition: D = t

Nb
i Bi. Obviously, the number of batches,

Nb, is equal to d | D |
β
e. The gradient with respect to every weight,

W, entering the definition of the function L is computed, within
each batch, as

G(i) = ∇W L(W,Bi) = ∇W

∑
j:y( j)∈Bi

y( j) − y
( j)
pred(z( j); W)

∆y( j)


2

. (C.1)

While i takes values in the range 1 . . .Nb, the weights, W, are
updated so as to minimize, via a stochastic procedure, the loss
function. This is achieved as follows:

W ← W − αlrG(i). (C.2)

The hyperparameter αlr is called the learning rate and drives the
amount of stochasticity in the loss descent process. In the present
work a more complex, yet conceptually equivalent, variant of the
SGD called Adam is implemented.

A so-called epoch is completed when all batches have been
used. The number of epochs, Ne, is another hyperparameter that
has to be fixed a priori, as does the batch size, bs. A high num-
ber of epochs (such as 400 or 600, as employed in the present
application) is usually chosen. To avoid overfitting, the early stop
technique is employed. Such a technical aid consists in taking
a small subset, V, of the data set (∼ 15% of D) and exclud-
ing it from the training process. During training stages, hence,
the employed data set is D′ = D−V. While applying SGD
to the loss so as to minimize it, loss evaluation on data set V,
L(INN,V) is also performed. When the latter function reaches
a plateau, the optimization process is stopped. This procedure
relies on two hyperparameters – δ, the absolute variation in L
that can be considered a real loss change, and p, the number of
consecutive epochs with no recorded variation before the fitting
algorithm can eventually be terminated.

One additional hyperparameter needs to be mentioned: as
already explained in the main body of the paper, the predic-
tion ypred involves a numerical integral of the NN approximat-
ing function, INN. The integration step dz′ thus has to be set and
underwent of a meticulous optimization. A hyper-optimization
process designed to find the best set of hyperparameters was car-
ried out, employing several CPL- and ΛCDM-like models. Such
a process resulted in a set of parameters that were fixed and left
unchanged during the trials. A list of the chosen hyperparameters
is provided in Table C.1.
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Table C.1. Hyperparameters employed.

N2 ` Ne bs αlr δ p dz′

20 5 600 100 10−6 10−6 35 5 10−4

Appendix D: Simulation results

In the following we report the results of the regression model
against the simulated settings mentioned, but not displayed, in
the main text.

Fig. D.1. Simulations with a "perfect" sample (data set A): results of
the NN analysis of a simulated sample of 4,000 objects with a log-flat
redshift distribution and a negligible dispersion with respect to a flat
ΛCDM model with ΩM=0.3. Top panel: Estimated values of I(z) for
different values of ΩM (Eq. 3; the "correct" value for the simulated data
is I(z)≡0). Central panel: Hubble diagram with the reconstructed best-
fit function obtained from the NN analysis. Bottom panel: Loss values
for different values of ΩM . The minimum is at ΩM=0.3, i.e., the "true"
value. The corresponding I(z) is consistent with zero at all redshifts.
These results demonstrate that the NN analysis is able to recover the
correct model and the "true"value of ΩM .

Fig. D.2. Results for data set B. The governing model is a CPL with
w0 = −1.5, wa = 0.5.

Appendix E: Estimating the errors

To estimate the prediction error ∆ypred(z), we employed a boot-
strap method. To this end, the fitting procedure was arranged so
as to produce B independent estimators of the quantity ypred and
INN(z), namely y[k]

pred and I[k]
NN with k ∈ 1 . . . B. Each y[k]

pred is the
result of an optimization process started from a subsetD[k] ⊆ D

obtained from D via uniform sampling with a replacement of
| D | elements. The prediction errors ∆ypred and ∆INN were then
computed by extracting the standard deviation from both sets as

∆ypred(z) =

B∑
k=1

√√(
ȳpred(z) − y[k]

pred(z)
)2

B − 1

∆INN(z) =

B∑
k=1

√(
ĪNN(z) − I[k]

NN(z)
)2

B − 1

, (E.1)

where symbols ȳpred(z) and ĪNN(z) represent the arithmetic mean
of the estimates y[k]

pred and I[k]
NN. Throughout this work, the errors

were computed after B = 80 bootstrap samples.
Here we comment on the derivation of the indicator to

gauge the correspondence of the fitted model with a conven-
tional ΛCDM scheme. We began by formally expressing δypred,
the distance of the obtained prediction with respect to the refer-
ence ΛCDM model, as

δyΛCDM
pred (INN; z) =

δypred

δI

∣∣∣∣∣
I=ΛCDM

δI

=
δypred

δI

∣∣∣∣∣
ΛCDM

(INN − IΛCDM)
, (E.2)
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where
δypred

δI
stands for the functional derivative and IΛCDM = 0.

This equation can be further expanded to yield

δypred

δI

∣∣∣∣∣
I=ΛCDM

= −
1
2

∫ z

0
α(z′)−

3
2 (1 −Ωm)eI(z′)

∣∣∣∣∣
I=0
, (E.3)

where α(z′) = ΩM (1 + z′)3 + (1 −ΩM) eI(z′). By eventually set-
ting δI = INN, one gets

δyΛCDM
pred (INN; z) =

Ωm − 1
2

∫ z

0

(
α(z′)

∣∣∣
I=0

)− 3
2 INN(z′)dz′. (E.4)

We are finally in a position to introduce the scalar indicator that
fulfills the purpose of quantifying the sought distance, normal-
ized to the associated error. This is denoted as ∆ΛCDM and takes
the form

∆ΛCDM(D, INN) =
1
| D |

∑
i∈D

δyΛCDM
pred (INN; z(i))

∆ypred(INN; z(i))
. (E.5)

The fitted integral function INN is deemed compatible with the
ΛCDM model if ∆ΛCDM < 1. When this condition holds true,
the predictions deviate from a ΛCDM by an amount that, on
average, is smaller than the corresponding prediction error.

Fig. E.1. ∆ΛCDM vs. the imposed error for the Pantheon data set (i.e.,
just supernovae). The dot stands for the experimental data, while the
solid line and the shadowed region refer to the corresponding theoretical
benchmarks, obtained as described in the text.

The indicator in Eq. (E.5) was computed for different
mock samples, mimicking ΛCDM, with progressively increas-
ing errors sizes, assumed uniform across data points, and values
of ∆y that range from zero to 0.15, thus including the value that
is believed to apply to real data:∼ 0.14. For every choice of the
assigned error, 30 mock samples with Ωm = 0.3 were gener-
ated and subsequently fitted, assuming different choices of Ωm,
namely {0.2, 0.3, 0.4}. For every selected Ωm, a bootstrap proce-
dure was implemented (see the SI) to estimate ypred,∆ypred, and
INN,∆INN. The best-fit values are selected to be those associ-
ated with the smaller mean loss functions (evaluated against the
imposed Ωm). Following this choice, the mean and the variance
of ∆ΛCDM were computed from the outcomes of the fits and per-
formed on the corresponding (30) independent realizations.

In Figs. E.1 to E.4, the results of the analysis for the different
data sets are displayed. In Fig. E.1, solely supernova data (z < 2)
were considered when carrying out the regression. The dot refers
to the experimental data set (Lusso et al. 2020) and is set to the
estimated error (0.14). It falls within the shadowed domain, thus

Fig. E.2. ∆ΛCDM vs. the imposed error for the combined supernova +
quasar sample at redshifts z < 2 (left panel) and z > 2 (right panel).
The dots refer to the experimental data, while the solid lines and the
shadowed regions stand for the corresponding theoretical benchmarks,
obtained as described in the text.

Fig. E.3. ∆ΛCDM vs. the imposed error for the Pantheon data set (i.e.,
just supernovae). The reference mean and variance (represented as a
shaded region) are shown in blue. The dot is obtained by processing the
synthetic example generated via the CPL model.

Fig. E.4. ∆ΛCDM vs. the imposed error for the combined supernova +
quasar sample at redshifts z < 2 (left panel) and z > 2 (right panel). The
reference mean and variance (represented as a shaded region) obtained
with mock ΛCDM samples are shown in blue. The dots are obtained by
processing the synthetic example generated via the CPL model.

implying that the examined data set is compatible with a ΛCDM
model.

In Fig. E.2 we analyze the full data set (Pantheon + quasars).
The regression was hence carried out by considering data span-
ning the whole range in z. After the fitting was performed, data
were split into two different regions: at low (z ≤ 2) or high
(z ≥ 2) redshifts. The dots refer to the experimental data set and
are set to the estimated error (0.14). The portion of the data set
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Fig. E.5. Plot of the functional derivative computed with Eq. (E.2) and
varying Ωm and z.

at low redshifts (mostly populated by supernovae) is compatible
with a ΛCDM model with Ωm = 0.3, within statistical errors.
The agreement is even more pronounced when the regression
is carried out solely accounting for supernovae (see Fig. E.1).

Conversely, for z > 2, the point computed after available exper-
iments, notably experiments involving quasars, is at a distance
of about 5σ from the expected value of the indicator ∆ΛCDM.
Hence, accounting for quasars enables us to conclude that the
ΛCDM model is indeed extremely unlikely.

In Figs. E.3 and E.4 we repeat the analysis by employing a
data set generated from a CPL model, with an error compatible
with that estimated from experiments (equivalent to data sets D
and F). The results indicate that accounting for data at high red-
shifts is mandatory for resolving the degeneracy between distinct
generative models.

As a final point we elaborate on the reason why different
models appear indistinguishable at low z. Function INN is the
argument of a functional that goes from the space of function I
to the space of the predictions. The way these two spaces com-
municate (or rather how function I reverberates on every ypred)
is a nontrivial function of the hyperparameters (e.g., Ωm and the
integration steps) and the domain explored. To clarify this point,

we plot the functional derivative
δypred

δI
(evaluated at the ΛCDM

model) against Ωm and z. Via a visual inspection of Fig. E.5, the
relevant impact of a low z and a large Ωm is evident. The func-
tional derivative is hence very small for the portion of the data set
that is populated by the vast majority of supernova entries. This
implies that different models (in terms of the associated I(z) )
can yield very similar predictions. It is hence difficult to draw
conclusions about the validity of different models if one solely
deals with data at low redshifts.

A13, page 9 of 9


	Introduction
	The cosmological background
	Regression via deep neural networks
	Conclusions
	References
	Data processing
	The employed neural network model
	Model optimization
	Simulation results
	Estimating the errors

