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The study of reaction-diffusion systems on networks is of paramount relevance for the understanding of
nonlinear processes in systems where the topology is intrinsically discrete, such as the brain. Until now reaction-
diffusion systems have been studied only when species are defined on the nodes of a network. However, in a
number of real systems including, e.g., the brain and the climate, dynamical variables are not only defined on
nodes but also on links, faces and higher-dimensional cells of simplicial or cell complexes, leading to topological
signals. In this work we study reaction-diffusion processes of topological signals coupled through the Dirac
operator. The Dirac operator allows topological signals of different dimension to interact or cross-diffuse as it
projects the topological signals defined on simplices or cells of a given dimension to simplices or cells of one
dimension up or one dimension down. By focusing on the framework involving nodes and links we establish the
conditions for the emergence of Turing patterns and we show that the latter are never localized only on nodes
or only on links of the network. Moreover when the topological signals display Turing pattern their projection
does as well. We validate the theory hereby developed on a benchmark network model and on square lattices
with periodic boundary conditions.

I. INTRODUCTION

Nature is a blossoming of patterns, namely spatially het-
erogeneous structures, spontaneously emerging from the web
of nonlinear interactions existing among the many basic units
constituting the system under scrutiny [1, 2]. Scholars have
developed theories capable to deal with both the case of sta-
tionary patterns [3–5] and time varying ones [6–10]. Such
research has been developed in the framework of network sci-
ence [11–14] relying on the assumption that system interac-
tions can be sufficiently well described by using a pairwise
representation: the basic units composing the system exhibit
their own dynamics, i.e., a local evolution law associated to
each node of the network, and then they interact by diffusing
or via non-local (long-range) interactions, by using the avail-
able links.

Networks however only capture pairwise interactions while
higher-order interactions [15–22] are crucial to describe sev-
eral empirical systems in physics, biology, neuroscience or
social sciences. Interestingly, recent research taking into ac-
count higher-order interactions is rapidly changing our un-
derstanding of the relation between structure and function of
complex systems [15, 23, 24].

Simplicial complexes are higher-order networks that come
with extremely rich and useful structures inherited from dis-
crete topology [15, 25, 26]. Roughly speaking, a simpli-
cial complex is a topological structure that, besides nodes
and links, also contains triangles, i.e., three-body interac-
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tions, tetrahedra, i.e., four-body interactions, and so on. Even
more generally cell complexes [27] also include the other con-
vex polytopes, i.e., not only triangles and tetrahedra but also
squares, pentagons, etc. and hypercubes, orthoplex etc. One
can thus consider topological signals defined on nodes and
links, but also on higher-order structures [15]. Examples of
topological signals occur for instance in neuronal networks,
where the interaction between two neurons is mediated by the
synaptic signal [28]. Recent scientific literature points out the
relevance of edge signals also in large scale brain networks
[29, 30], and in biological transportation networks [31, 32].
Edge signals occur also in in power-grids [33] or in traffic on a
road network [34–37]. Moreover edge signals might also rep-
resent a number of climate data such as currents in the ocean
and velocity of wind that can be projected on a suitable tri-
angulation of the Earth surface [36, 37]. Topological signals
can undergo higher-order simplicial synchronization [38–46],
and higher-order diffusion [41, 47, 48]. Moreover datasets of
topological signals can be treated with topological signal pro-
cessing [34, 37, 49] and with topological machine learning
tools [50–53]. Note that this increasing interest in topological
signals occurs while the entire field of dynamical processes on
simplicial complexes and hypergraphs is bursting with signif-
icant research activity [54–65].

Topological signals of a given dimension can be coupled
by the higher-order Laplacians also called Hodge-Laplacians
or combinatorial Laplacians [15, 66, 67]. However the Dirac
operator [68–71] is necessary to couple topological signals
of different dimension such as interacting signals defined on
nodes and links of a network. For instance the dynamics
of neuronal networks can be modeled by using two differ-
ent topological signals: one defined on the nodes (the activ-
ity of each neuron) and the other defined on the edges (the
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neurotransmitter current across each synapse). Interestingly,
the Dirac synchronization which stems from the adoption of
the Dirac operator to couple topological signals of different
dimension, provides a topological and local pathway towards
explosive synchronization and rhythmic phases [43, 44].

In this paper we propose a framework to reveal Turing pat-
terns of reacting species described by topological signals de-
fined on the cells of different dimensions (nodes, links, trian-
gles, squares) coupled through the Dirac operator. Our main
goal is to consider reaction-diffusion systems [72] and extend
the Turing theory developed so far on networked systems [4]
to the framework of simplicial and cell complexes.

Turing’s original framework involved two reacting species
whose stable homogeneous equilibrium can turn out unstable
once the species are allowed to diffuse and suitable conditions
of the species diffusion coefficients are assumed [3]. Gierer
and Meinhardt later emphasized that for the Turing instabil-
ity to set up, one of the two species needs to be an activator
while the other should be an inhibitor, and moreover the latter
needs to diffuse much faster than the former [73]. The the-
ory was successively extended to regular lattices by Othmer
and Scriven [74] and finally to complex networks by Nakao
and Mikhailov [4]. Let us emphasize that network patterns
are equilibrium states of the system with a dependence on the
node. The latter framework has been further expanded con-
sidering directed networks [75], multiplex [76], temporal net-
works [77] and non-normal networks [78], just to mention a
few. In all the above settings, the two species react in each
node while diffusing through the links. For signals defined
exclusively on the nodes cross-diffusion terms have been been
introduced in [79, 80]. Turing patterns on higher-order struc-
tures have been recently studied in [81, 82]. Note however that
our approach is different because in those works the dynam-
ics is restricted to nodes, while links and high-order structures
support the generalized diffusion.

In this paper we provide a general theory describing
reaction-diffusion systems of topological signals of different
dimension (i.e., defined on nodes, links, triangles, squares,
etc.) coupled with the Dirac operator. In particular, we con-
sider two different settings. In the first case we assume the
reaction term to be solely responsible for the coupling of sig-
nals of different dimension and the diffusion term is mod-
eled by the Hodge-Laplacians. In the second case, we as-
sume the diffusion also to include cross-diffusion terms cou-
pling the dynamics of signals in different dimension. For the
sake of simplicity, in this work, we will focus our analysis
to the case of coupled nodes and links signals which is ar-
guably also the most relevant to applications. Indeed it is a
common scenario to have localized reactions and quantities
produced in the nodes, to flow across links connecting cou-
ples of node; in some cases links themselves are dynamical
entities, whose behavior influence the local reactions but can
also be in turn influenced by the latter. We derive the condi-
tions under which stable Turing patterns can be observed and
we highlight the differences between the dynamics with and
without cross-diffusion terms. The analytical results derived
in general are presented with applications to square lattices
with periodic boundary conditions and validated by numeri-

cal simulations on a benchmark network.
The paper is structured as follows. In Sec II we outline

a general theoretical framework for investigating Turing
patterns of topological signals, and we distinguish the case in
which there is only a Dirac reaction term while diffusion is
dictated by Hodge-Laplacians and the case in which we in-
troduce also Dirac cross-diffusion terms describing diffusion
processes among signals defined on different dimensions. In
Sec. III and IV we focus on topological signals defined on
nodes and links of the network and we define the conditions
for the onset of the Turing instability when only a Dirac
reaction term is considered (Sec. III) and when additionally
Dirac cross-diffusion terms are introduced (Sec.IV). The
theoretical insights gained in Sec. III and IV are tested
and validated on a benchmark model. Finally, in Sec. V
we provide the concluding remarks. The paper is enriched
with few appendices providing background information on
algebraic topology, some details of the derivations discussed
in the main body of the work and simulations results on
Turing patterns of topological signals defined on nodes and
links of a square lattice with periodic boundary conditions.

II. TURING THEORY FOR TOPOLOGICAL SIGNALS

We are interested in studying reaction-diffusion systems de-
fined on simplicial and cell complexes (for an introduction to
such topological structures and their main properties see Ap-
pendix A). This entails defining appropriate reaction and dif-
fusion terms. In a network the reaction term is localized on
nodes, where the interacting species can be found. When the
interacting species are associated to simplices of different di-
mension, a Dirac reaction term that uses the Dirac operator
is required to allow topological signals of different dimension
to interact. In a network, concentrations can flow from one
node to one of its neighbors, passing through links, namely
the structure one dimension above. A similar idea can be
thought in simplicial complexes: quantities defined on links
can flow among links by using the faces they share, hence
again the structures one dimension above. There is however
a second possibility: they can use structures one dimension
below, i.e., nodes, to communicate. Such processes can be de-
scribed by introducing the Hodge-Laplacian operator which
describes uncoupled diffusion of topological signals of any
given dimension. However Hodge-Laplacians describe diffu-
sion terms that act on topological signals of any given dimen-
sion separately. Requiring a diffusive coupling of topological
signals of different dimension can be only achieved by consid-
ering Dirac cross-diffusion terms which involve odd powers of
the Dirac operator. Specifically, this includes cross-diffusion
terms that are linear or cubic in the Dirac operator.

Here we propose a theory of Turing instability for topolog-
ical signals and to this end we consider a simplicial and cell
complexes of dimension d and species living on nodes, links,
triangles, etc. In the present terminology, the concentration of
the species living on nodes is a 0-topological signal while the
concentration of the species defined on links is a 1-topological
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Figure 1. We schematically represent the dynamical state of a simplicial complex encoded by the vector Φ = (u, b,w)> and the vector
Ψ = DΦ = (û, v̂, ŵ)>. In particular we represent topological signals and projected topological signals supported on 0, 1 and 2-simplices
respectively in panels a), b), and c). The Dirac operator D projects the topological signals of each dimension either one dimension up or one
dimension down, and leads to projected components defined on nodes (û = B1v, links v̂ = B2w + B>1 v, and triangles ŵ = B>2 v. Here û = B1v
describes the link signals projected on the nodes; B>1 u indicates the irrotational component of v̂ and describes the projection of the node signals
on the links; B2w indicates the solenoidal component of v̂ and describes the projection of the triangle signals on the links; finally B>2 v describes
the projection of the link signals on the triangles.

signal etc. The dynamical state of the structures we are con-
sidering is described by a vector Φ which is the direct sum of
all topological signals defined on the simplicial or cell com-
plex. For example in a d = 2 dimensional cell complex with
N0 nodes, N1 links and N2 2-dimensional cells (such as trian-
gles, squares, pentagons, etc.) we have

Φ =

u
v
w

 , (1)

where u ∈ RN0 , v ∈ RN1 ,w ∈ RN2 are the vectors of concen-
tration of species defined on nodes, links and 2-dimensional
cells respectively. These signals can only interact with each
other when we consider their projection to simplices of one
dimension up or one dimension down. This projection is per-
formed by applying the Dirac operator D to Φ obtaining new
(projected) signals (for the definition of the Dirac operator see
Appendix A), i.e.,

Ψ = DΦ =

 û
v̂
ŵ

 , (2)

where û ∈ RN0 , v̂ ∈ RN1 , ŵ ∈ RN2 are defined on nodes, links
and 2-dimensional cells respectively. In a general cell com-
plex of dimension d = 2 the Dirac operator D is a M × M
matrix with M = N0 + N1 + N2 which can be expressed in

terms of the incidence matrices B1,B2 (defined in Appendix
A) and their transpose as

D =

 0 B1 0
B>1 0 B2
0 B>2 0

 . (3)

We therefore obtain that the projected signal Ψ is given by

Ψ = DΦ =

 û
v̂
ŵ

 =

 B1v
B>1 u + B2w

B>2 v

 , (4)

where B>1 u and B2w describe the irrotational part and the
solenoidal part of the link signal v̂. Therefore, the dynami-
cal state of the cell complex comprises both the topological
signals Φ and their projections Ψ = DΦ (see Figure 1 for
a schematic illustration). Note that the Dirac operator can
be seen as the “square root” of the higher-order or Hodge-
Laplacian operator L as

L = D2 =

L0 0 0
0 L1 0
0 0 L2

 , (5)

where L0 = B1B>1 ,L1 = B>1 B1 +B2B>2 and L2 = B>2 B2 are the
Hodge-Laplacians acting on topological signals of dimension
zero, one, and two respectively and describing higher-order
diffusion (for details see Appendix A) [41, 47, 48]. In par-
ticular, in the case of a simplicial complex we have that L0
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describes diffusion from nodes to nodes through links, L1 de-
scribes diffusion from links to links either through nodes or
through triangles and, L2 describes diffusion from triangles to
triangles through links. Here we propose a Turing instabil-
ity theory for topological signals where the topological sig-
nals Φ can be coupled to the projected topological signals Ψ

either through a Dirac reaction term or through a Dirac diffu-
sion term or both. In presence of a Dirac reaction term and
a Laplacian diffusion term, the reaction-diffusion process of
topological signal is defined as

Φ̇ = F(Φ,DΦ) − γLΦ, (6)

where F(Φ,DΦ) is the Dirac reaction term coupling each
topological signal of dimension n with the nearby topologi-
cal signals of dimension n + 1 or n− 1 projected to dimension
n. In particular F(Φ,DΦ) here indicates a generic nonlinear
function, assumed to be applied component-wise on the vec-
tors. For instance for d = 2 we have

F(Φ,DΦ) =

 f0(u,B1v)
f1(v,B>1 u + B2w)

f2(w,B>2 v).

 , (7)

where fn(x, y) are nonlinear functions, such that f1(u,B1v) =

( f1(u1, (B1v)1), . . . , f1(uN0 , (B1v))N0 ) etc. The matrix γ in
Eq.(6) is a diagonal matrix

γ =

D0 0 0
0 D1 0
0 0 D2

 , (8)

where Dn is the diffusion constant acting on topological sig-
nals of order n. Therefore Eq.(6) describes topological sig-
nals defined on the cells of the cell complex that react with
the projection of the topological signals defined in different
dimension while undergoing higher-order diffusion.

Note that from the dynamical system given by Eq.(6) one
can derive the dynamics of the projected signal Ψ = DΦ

which is given by

Ψ̇ = F̂(Φ,Ψ) −DγDΨ, (9)

where F̂(Φ,Ψ) = DF(Φ,Ψ). In the case of diffusion constants
independent on the order of the simplices, i.e., for Dk = D,
this equation reduces to

Ψ̇ = F̂(Φ,Ψ) − γLΨ. (10)

Therefore in this case the dynamics of the projected signal is
the same as the dynamics of the signal Φ (Eq. (6)) provided
that F(Ψ,Φ) = F̂(Φ,Ψ) = DF(Φ,Ψ) as for instance in the
case of square lattices with periodic boundary conditions.

We now consider Dirac cross-diffusion terms enforcing dif-
fusion of signals across different dimensions.

In particular, we consider including a linear or a cubic Dirac
cross-diffusion term which are proportional to a linear or cu-
bic power of the Dirac operator. Let us observe that this is a
natural choice, since as already observed, the second power

of the Dirac operator is a diagonal matrix containing Hodge-
Laplacians on its diagonal. In the case of a linear Dirac cross-
diffusion term, the reaction-diffusion dynamics takes the form

Φ̇ = F(Φ,DΦ) − γ̃DΦ − γLΦ, (11)

where γ̃ is the diagonal matrix of cross-diffusion constants D̃n,

γ̃ =

D̃0 0 0
0 D̃1 0
0 0 D̃2

 . (12)

In this case, the corresponding projected signals Ψ = DΦ

obey the dynamical system of equations

Ψ̇ = F̂(Φ,Ψ) −Dγ̃Ψ −DγDΨ. (13)

If the diffusion and cross-diffusion constants are the same and
γ and γ̃ are proportional to the identity matrix, then we have
that both γ and γ̃ commute with the Dirac operatorD and the
dynamics of projected signals becomes

Ψ̇ = F̂(Φ,Ψ) − γ̃DΨ − γLΨ. (14)

Therefore, in this case too, as long as F̂(Φ, ψ) = DF(Φ,Ψ)
can be written as the reaction term F(Φ,Ψ) (as it happens for
square lattices with periodic boundary conditions for exam-
ple) the equation for the signal is equal to the equation for the
projected signals. In the case of a cubic Dirac cross-diffusion
term, we have instead that

Φ̇ = F(Φ,DΦ) − γLΦ − γ̃D3Φ. (15)

The corresponding projected dynamics reads,

Ψ̇ = F̂(Φ,Ψ) −DγDΨ −Dγ̃LΨ, (16)

which reduces to

Ψ̇ = F̂(Φ,Ψ) − γLΨ − γ̃D3Ψ, (17)

when, again, both γ and γ̃ are proportional to the identity ma-
trix.

In all the considered cases, the Turing mechanism requires
the presence of a stable homogeneous equilibrium once the
diffusion part is silenced. Such state turns out unstable for
suitable values of the diffusion coefficients and conditions on
the underlying topology. Eventually, arbitrarily small initial
perturbations around the homogeneous state will exponen-
tially grow and ultimately return a pattern, i.e., a spatially het-
erogeneous solution.

When dealing with topological signals, a necessary condi-
tion is that the homogeneous state vector h = (1, . . . , 1)> is in
the kernel of the Dirac operator h ∈ ker(D) or, equivalently,

Dh = 0. (18)

In conventional node to node diffusion case, in which only
the node signal is considered, such condition is always satis-
fied for a connected network. However when the state vector
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includes both nodes and links signals Eq.(18) accounts to re-
quire

B1ĥ = 0 and B>2 ĥ = 0 (19)

where ĥ = (1, 1 . . . , 1)> is a homogeneous N1-dimensional
column vector defined on the links of the network.

By assuming to have a 1-simplicial complex, (i.e., a net-
work) we discard the presence of 2-dimensional cells (such as
triangles, squares, pentagons,etc.). In that case B2 = 0, and
the second of the conditions in Eq.(19) is trivially satisfied.
Let us now focus on the remaining condition. Tackling this
problem becomes much easier by noticing that the i-th row
of the boundary operator is equal to minus the divergence of
node i. Such equivalence, proved in [26], can be exploited to
construct a simplicial complex with the wanted property.

By requiring that every node has an equal amount of in-
coming and out-going links, we thus ensure that a homoge-
neous signal, namely an edge-flow directed as indicated by
the links orientation 1, has zero divergence. To sum up, the
following analysis grounded on the conditions given in Eq.
(19), holds for every network (1-dimensional cell complex)
whose nodes have an even number of connected edges. No-
tably examples of these networks are square lattices with pe-
riodic boundary conditions.

Note that the analogous condition applying to 2-
dimensional cell complexes is much more demanding. In
particular no 2-dimensional simplicial complex admits an ho-
mogeneous eigenvector in the kernel of the Dirac operator.
However it was recently shown [39] that 2-dimensional cell
complexes built from square lattices with periodic boundary
conditions obey this property. More generally it is possi-
ble to show that d-dimensional cell complexes built from d-
dimensional square lattices obey this property for any dimen-
sion d.

III. INTERACTING TOPOLOGICAL SIGNALS OF NODES
AND LINKS WITH DIRAC REACTION TERM

A. Conditions for the onset of the Turing instability

In this section we focus on reaction-diffusion systems in-
volving topological signals defined on the nodes and on the
links of a network. Our goal is to derive the dispersion rela-
tion, roughly speaking the largest Lyapunov exponent of the
homogeneous state considered as a function of the model pa-
rameters and of the topological structure. This allows us to
determine the conditions for the Turing instability onset in the
presence exclusively of a Dirac reaction term that couples the
two topological signals of different dimension, while the dif-
fusion part is modeled with the relevant Hodge-Laplacians ,

1 Let us stress that we are dealing with undirected network and thus the in-
coming / outgoing edges are defined with respect to the ordering of the
simplicial or cell complex.

i.e., driven by Eq.(6) which we rewrite here for convenience

Φ̇ = F(Φ,DΦ) − γLΦ. (20)

In a network we have Φ = (u, v)> and F(Φ,DΦ) =(
f (u,B1v), g(v,B>1 u)

)>
where f and g are two generic nonlin-

ear functions, assumed to be applied component-wise on the
vectors, i.e., f (u,B1v) = ( f (u1, (B1v)1), . . . , f (uN0 , (B1v))N0 ).
Here γ reduces to the (N0 + N1) × (N0 + N1) block diagonal
matrix with structure

γ =

(
D0IN0 0

0 D1IN1

)
, (21)

where D0 and D1 indicate the diffusion constants of the
species defined on nodes and links respectively and INa in-
dicates the Na×Na identity matrix, a = 0, 1. The Dirac opera-
tor D and the Hodge-Laplacian operator L are defined as the
(N0 + N1) × (N0 + N1) matrices with block structure

D =

(
0 B1

B>1 0

)
, L = D2 =

(
L0 0
0 L1

)
. (22)

If follows that the dynamics driven by Eq.(20) can be rewritten
explicitly as

du
dt

= f (u,B1v) − D0 L0 u,

dv
dt

= g
(
v,B>1 u

)
− D1 L1 v

(23)

where D0 > 0 (resp. D1 > 0) is the diffusive coefficient of
species u (resp. v). For instance, resuming the biological ex-
ample from the introduction where neurotransmitters concen-
tration and neuronal activity are schematized by topological
signals, we can think of v as the synaptic signal, and of u as
a neuron signal. In this setting the Dirac operator is capable
of properly connect the lower and higher dimensional signals,
by acting as an effective and simple dynamical operator. In
the spirit of Turing theory, let us silence the diffusive terms
and look for a homogeneous solutions, i.e., the existence of
u∗ = u0h and v∗ = v0h, for some constants u0 and v0. Be-
cause of the assumption on the underlying simplex, we have
B1v∗ = 0 and B>1 u∗ = 0. The existence of a homogeneous
fixed point reverberates on the structure of f , g such that

0 = f (u∗, 0) and 0 = g(v∗, 0) , (24)

which in turn yields that u0 and v0 are solutions of f (u0, 0) =

g(v0, 0) = 0.
To study the stability feature of the homogeneous equilib-

rium, we consider a homogeneous perturbation about the lat-
ter, δu = u − u∗ and δv = v − v∗. Hence by linearizing (23) we
obtain

dδu
dt

= ∂u f (u∗, 0)δu,

dδv
dt

= ∂vg(v∗, 0)δv ,
(25)
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where we used again the conditions h = (1, . . . , 1)> ∈ ker B1
and h ∈ ker B>1 to remove some terms in the previous equation.
The condition for the stability is thus

∂u f (u∗, 0) < 0 and ∂vg(v∗, 0) < 0 . (26)

Let us observe that Eq. (26) implies that both species
are self inhibitors, this is the result of the peculiar form of
Eq. (23), and of the assumption B1v∗ = 0 and B>1 u∗ = 0 which
ultimately decouples the dynamics of the two species in the
linear regime. This is at odd with the classical Turing instabil-
ity where patterns can never emerge in the inhibitor-inhibitor
setting, unless some additional assumptions are made [83].

We now focus on the stability of such equilibrium once sub-
jected to heterogeneous perturbations, hence not in the kernels
of L0 and L1. Let us linearize Eq. (23) about the equilibrium
solution, by obtaining

dδu
dt

= (∂u f ) δu +
(
∂B1v f

)
B1δv − D0 L0 δu,

dδv
dt

= (∂B>1 ug)B>1 δu + (∂vg)δv − D1 L1 δv ,
(27)

where ∂B1v f and ∂B1v f denote the scalars indicating the
derivative of f , g with respect to their second argument, (i.e.,
the projected higher and lower dimensional signal respec-
tively) calculated at the homogeneous stationary solution.

We now note that the network Laplacians L0 = B1B>1 and
L1 = B>1 B1 are isospectral, i.e., they have the same non-zero
spectrum. The N̂ non-zero eigenvalues Λk

0 with 1 ≤ k ≤ N̂
of L0 and L1 can be expressed as the square of the singular
values bk of B1, i.e., Λk

0 = b2
k . The eigenvectors ψm

0 and ψm
1

of L0 and L1 can be adopted as a basis to perform the singu-
lar value decomposition of B1. On a connected network these
eigenvectors include the eigenvectors ψk

0 and ψk
1 correspond-

ing to the non-zero eigenvalue Λk
0 = Λk

1 = b2
k , the eigenvec-

tor φh
0 = (1, . . . , 1)> of L0 associated to the zero eigenvalue

Λ0 = 0 and the eigenvectors ψl
1 associated the zero eigenval-

ues Λl
1 = 0 of L1. Interestingly the eigenvectors ψk

0 and ψk
1

associated to the eigenvalue Λk
0 = Λk

1 = b2
k > 0 obey

B1ψ
k
1 = bkψ

k
0, B>1 ψ

k
0 = bkψ

k
1. (28)

Using these results, the signals δu and δv, as well as the
projected signals δû = B1δv and δv̂ = B>1 δu, can be projected
onto the basis of the eigenvectors ψm

n of Ln (with n = 0, 1 for
the analyzed case) corresponding to the non-zero eigenvalues
Λk

0 = b2
k . We obtain

〈ψk
0, δu〉 = δûk, 〈ψ

k
1, δv〉 = δv̂k , (29)

〈ψk
0,B1δv〉 = bkδv̂k, 〈ψ

k
1,B

>
1 δu〉 = bkδûk, (30)

where 〈·, ·〉 denotes the scalar product. By using Eq.(29) and
Eq.(30), we can project in Eq.(27) the equations for δu onto
ψk

0
> and the ones for δv on ψk

1
>, with k such that Λk

0 = Λk
1 =

b2
k , 0, to eventually obtain:

dδûk

dt
= (∂u f ) δûk +

(
∂B1v f

)
bkδv̂k − D0b2

kδûk,

dδv̂k

dt
= (∂vg) δv̂k +

(
∂B>1 ug

)
bkδûk − D1b2

kδv̂k .

(31)

It is interesting to notice that the leftover modes are those
associated to the eigenvectors spanning the kernel space of
both L0 and L1. Since in the relevant case of a connected net-
work, the eigenvector associated to the zero eigenvalue is the
homogeneous one, i.e it is aligned to the stationary state u∗

of the nodes, it follows that δu will never have a component
along this eigenvector. However, we need to consider the pro-
jection of δv onto the eigenvectors ψl

1 associated to the zero
eigenvalues of L1, by obtaining

dδv̂l

dt
= (∂vg) δv̂l . (32)

Hence these modes are always stable due to the second condi-
tion in Eq. (26).

The instability is realized if the linear system (31) admits at
least one unstable mode; more precisely we have to compute
the eigenvalues of the matrix

Jk =

(
∂u f − D0b2

k bk∂B1v f
bk∂B>1 ug ∂vg − D1b2

k

)
, (33)

and determine if there is k for which the associated eigenvalue,
λ(bk), has a positive real part. Let us notice that the latter is
usually named dispersion relation in the literature. The eigen-
values of Jk can be obtained by solving

λ2 + λΓ1

(
b2

k

)
+ Γ2

(
b2

k

)
= 0 . (34)

where Γ1

(
b2

k

)
and Γ2

(
b2

k

)
are given by

Γ1

(
b2

k

)
= b2

k(D1 + D0) − (∂vg + ∂u f ), (35)

Γ2

(
b2

k

)
= a2b4

k + a1b2
k + a0, (36)

with

a2 = D0D1,

a1 = −
(
D1∂u f + D0∂vg + ∂B>1 ug ∂B1v f

)
,

a0 = ∂u f ∂vg.

(37)

Since both the leading coefficient of Eq.(34) and Γ1(b2
k) are

positive, the existence of a solution with positive real part re-
quires that Γ2(b2

k) < 0 for some k. Let us observe that Γ2(b2
k)

given by Eq. (36) is a parabola in b2
k with positive concavity,

a2 = D0D1 > 0, and positive constant term, a0 = ∂u f ∂vg > 0.
Therefore, to satisfy the condition Γ2(bk) < 0 with a real bk, a
necessary condition is

D0∂vg + D1∂u f + ∂B>1 ug ∂B1v f > 0. (38)

By using these conditions we can guarantee that Γ2(b2
k) < 0

if the minimum of the parabola is negative. A straightforward
computation returns the condition(

D0∂vg + D1∂u f + ∂B>1 ug∂B1v f
)2
> 4D0D1∂u f∂vg . (39)

Let us observe that differently from the classical Turing frame-
work, such condition depends on the diffusive coefficients
separately and not on their ratio.
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In conclusion, we have hence found the conditions for
the onset of Turing instability for topological signals whose
dynamics is described by Eq. (23), namely the stability of
the homogeneous solution given by Eq. (26) and the exis-
tence of at least one unstable mode according to Eqs. (38)
and (39). Moreover the roots of Eq. (34) are given by λ1,2 =

−Γ1 ±

√
Γ2

1 − 4Γ2, but Γ1 > 0 and Γ2 < 0, and thus λ1,2 are
real numbers. Consequently, the corresponding patterns are
stationary.

Let us now note that as expected, when the topological sig-
nals on nodes and links are not coupled by the Dirac reaction
term, i.e., when

F(Φ,DΦ) = F(Φ) =

(
f (u)
g(v)

)
, (40)

we can never have Turing patterns. In fact in this case we
would have ∂B>1 ug = 0, ∂B1v f = 0 and Eq. (38) cannot be satis-
fied together with Eq. (26). A major result of this study is that
the Turing instability of the topological signals of a network
will be never localized only on nodes or only on links but will
always involve both nodes and links signals. Moreover, we
also obtain that if the original signals Φ = (u, v)> display a
Turing pattern, the projected dynamics of DΦ = (B1v,B>1 u)>

also does.

B. Numerical results on a benchmark network

The aim of this section is to validate the above results with a
numerical study. To focus on the novelty of the framework and
to remove unnecessary complicated features, we will build a
toy model with cubic nonlinearities to test our theory (see Ap-
pendix B for additional results on topological Turing patterns
on the square lattice with periodic boundary conditions). By
keeping the same notation as before, i.e., u is the signal on the
nodes and v that on the links, the equations of our model read

u̇ = −au − bu3 + cB1v − D0 L0 u,
v̇ = −αv − βv3 + γB>1 u − D1 L1 v, (41)

where a, b, c, α, β, γ are non-negative real parameters.
System (41) admits (u0, v0) = (0, 0) as equilibrium point.

By computing the Jacobian of the system evaluated at this
point, we get

J0 =

(
∂u f ∂B1v f
∂B>1 ug ∂vg

)
=

(
−a c
γ −α

)
.

The system exhibits a Turing instability if the above param-
eters satisfy the conditions (26), (38) and (39), that we now
rewrite

a > 0 α > 0, cγ > αD0 + aD1, (42)
(cγ − αD0 − aD1)2 > 4D0D1aα, (43)

and the simplicial complex is such that h ∈ ker L1.
A simple example of a 1-dimensional simplicial complex

satisfying the latter condition is provided by a network of 12

nodes and 16 links, whose nodes degrees are even and with
closed loops. Note that the latter is chosen to be a subset
of a square lattice. In Fig. 2 we report the result of numer-
ical simulation clearly showing the emergence of Turing pat-
terns, namely stationary equilibria where the concentrations
vary across nodes and links, moreover the system state is far
from the homogeneous solution (u0, v0) = (0, 0). In Fig. 2.a
the nodes and links are colored according to the asymptotic
concentration of respectively u and v and we can thus have a
geometrical view of the emerging pattern. On the other hand
a dynamical view is presented in Fig. 2.b − c where we re-
port the nodes concentration, ui(t), and links concentration,
vi(t), as a function of time and we can observe the deviation
from the homogeneous solution and the stationary asymptotic
behavior of the solution. From this figure one can clearly ap-
preciate the onset of the instability at short time because of the
Turing condition, namely the positive dispersion relation (see
Fig. 3), pushing the initial conditions far from the equilibrium
state (u0, v0) = (0, 0). Interestingly we observe that the pro-
jected dynamics also display a Turing pattern (see Fig.2.d and
Fig.2.e).

To have a global view, we report in Fig. 3 the Turing region
in the plane (c, γ), i.e., the pairs for which the Turing instabil-
ity is realized. In the main panel (B) we show the maximum of
the real part of dispersion relation as a function of c and γ by
using a color code, white corresponding to the impossibility of
Turing instability while red to yellow are associated to the on-
set of the instability. The left panels, (A1), (A2) and (A3), cor-
respond to a choice for which Turing patterns cannot emerge
as confirmed by the negativity of the dispersion relation (A1)
and the vanishing of the node and link amplitude (A2 and A3).

The latter being defined by Anode(t) =

√∑N0
i=1(ui(t) − u0)2 for

the nodes and Alink(t) =

√∑N1
j=1(v j(t) − v0)2 for the links,

where u0 (resp. v0) is the nodes (resp. links), homogeneous
equilibrium value. The right panels are associated to parame-
ters inside the Turing region and indeed the dispersion relation
assumes positive values (C1) and the node and link amplitude
are strictly positive (C2 and C3). Let us observe that the am-
plitude can be thus considered as an order parameter capable
of distinguishing between the presence or the absence of pat-
terns.

Having fixed the topology of the support and the model pa-
rameters, nodes and links amplitudes depend on the initial
conditions and the peculiar dynamical path followed by the
system to settle into the pattern. In Fig. 4 we report the dis-
tribution of Anode and Alink once we repeat several times the
numerical simulations by changing the initial conditions. We
can observe that both distributions are peaked at some value
and the dispersion is relatively small, however let us stress that
the link amplitude distribution is very skewed.

IV. INTERACTING TOPOLOGICAL SIGNALS OF NODES
AND LINKS WITH DIRAC CROSS-DIFFUSION TERM

We now consider the dynamics including the Dirac cross-
diffusion terms. In particular we first cover the linear cross-
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Figure 2. a) Turing patterns for species defined on nodes and on links described by model (41) on a network satisfying the conditions for the
existence of an homogeneous equilibrium. In panels b) and c) we depict time series of the two species u and v on the nodes and the links,
respectively, while panels d) and e) show the time series of the projection of the two species with the action of the boundary operator B1. The
parameters are a = α = b = β = γ = D0 = D1 = 1 and c = 6. The perturbation defining the initial condition, is ∼ 10−2.

diffusion case and leave the analysis of the cubic cross-
diffusion term to a next section.

A. Cross-diffusion term linear in the Dirac operator

Topological signals on nodes and links can be coupled by
a linear cross-diffusion term, leading to the reaction-diffusion
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Figure 3. Turing region in the parameters space (c, γ). In the main panel (B), we report the region of parameters for which the Turing instability
emerges; having fixed a = α = b = β = D0 = D1 = 1 we show the maximum of the real part of dispersion relation as a function of c and γ,
by using a color code (yellow corresponding to large values, red to small but positive ones and white to negative ones). The black solid curves
is given by cγ =

√
4D0D1aα + αD0 + aD1 (see Eq. (43)). Panels A1), A2) and A3) correspond to the choice (c, γ) = (2, 2) that lies outside

the Turing region; one can observe that the dispersion relation (panel A1) is negative and indeed patterns cannot develop as shown by the node
(resp. link) amplitude (panel A2) resp. A3) decaying to 0. Panels C1, C2 and C3) show similar results but for (c, γ) = (6, 2) inside the Turing
region; the dispersion relation (C1) reaches positive values and the node (resp. link) amplitude stabilizes far from zero (C2, resp. C3).

Figure 4. We report the distribution of the node (a) and link (b) amplitude of the Turing patterns obtained by numerically simulating 5000
times system (41) with the parameters used in Fig. 2 and by changing the initial conditions.

dynamics

Φ̇ = F(Φ,Dφ) − γ̃DΦ − γLΦ, (44)

where the dynamical state of the network is captured by the
vector Φ = (u, v)>. The diagonal (N0 + N1)× (N0 + N1) matrix
γ̃ of cross-diffusion constants is here chosen to have block
structure

γ̃ =

(
D01IN0 0

0 D10IN1

)
. (45)

In particular the coupled dynamics of the topological signals
u and v can be re-written as

du
dt

= f (u,B1v) − D01B1v − D0 L0 u,

dv
dt

= g
(
v,B>1 u

)
− D10B>1 u − D1 L1 v .

(46)

In Appendix C we prove that system (44) can be mapped
onto (20) and thus results from the previous section can
be used to derive the conditions under which the reaction-
diffusion dynamics with the linear cross-diffusion term dis-
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plays Turing patterns. Namely, the stability of the homoge-
neous solution (26) and the existence of at least one unstable
mode that is guaranteed by the following two conditions to
hold true:

A = D0∂vg + D1∂u f + (∂B>1 ug − D01)(∂B1v f − D10) > 0 ,

A2 > 4D0D1∂u f∂vg , (47)

Let us stress a major consequence of these conditions, i.e.,
the cross-diffusion term is the driver for the instability. In-
deed the cross-diffusion term enforced through the Dirac op-
erator allows the onset of Turing patterns also in situations
where patterns can never emerge if we silence cross-diffusion.
In particular we can observe Turing patterns in presence of
Dirac-type crossed-diffusion patterns, also when the reaction
term only depends on Φ but not onDΦ, i.e.,

F(Φ,DΦ) = F(Φ) =

(
f (u)
g(v)

)
, (48)

as long as Eq. (26) and Eqs. (47) hold which can occur as long
as D01D10 > 0. Let us recall that, as discussed in the previous
section, under the latter assumption (48), Turing patterns can-
not develop in absence of linear cross-diffusion terms. Indeed
if D01 = D10 = 0, the variables ui and vi in system (46) be-
come decoupled and thus, because of condition (26) and the
non-positivity of the spectra of L0 and L1, the homogeneous
equilibrium is stable also with respect to heterogeneous per-
turbations.

Let us conclude this section by observing that Turing in-
stability can also emerge for systems where the coupling is
realized solely with the Dirac operator, namely there is no
need to include the two Hodge-Laplacian matrices, L0 and
L1 in Eq. (46). This claim can be proved by simply setting
D0 = D1 = 0 into Eq. (47) and requiring thus

(∂B>1 ug − D01)(∂B1v f − D10) > 0 ,

the second relation in (47) being automatically satisfied.

B. Cross-diffusion term cubic in the Dirac operator

Cross-diffusion terms for topological signals can be also
implemented with a cubic Dirac operator in the reaction-
diffusion dynamics

Φ̇ = F(Φ,Dφ) − L(γΦ + γ̃DΦ), (49)

which can be also written in terms of the signals u of the nodes
and the signals v of the links as

du
dt

= f̃ (u,B1v) − L0(D0u + D01B1v),

dv
dt

= g̃
(
v,B>1 u

)
− L1(D1v + D10B>1 u) .

(50)

Starting from the existence of a homogeneous equilibrium (u∗,
v∗) that we assume to be stable with respect to homogeneous
perturbations, we can determine the conditions for the onset of

Turing instability. We thus consider perturbations about such
equilibrium, δu = u−u∗, δv = v−v∗, whose evolution is given
by the linearized system

dδu
dt

= (∂u f ) δu +
(
∂B1v f

)
B1δv − L0(D0δu + D01B1δv),

dδv
dt

= (∂B>1 ug)B>1 δu + (∂vg)δv − L1(D1δv + D10B>1 δu) .
(51)

Considering the stability of perturbations within the kernel
of the Laplacians leads to the stability conditions given by
Eq. (26), because of the assumption B1h = B>1 h = 0 where
h = (1, ..., 1)>.

On the other hand, by considering a generic perturbation
and projecting it on the Laplacian eigenbasis, we obtain a new
Jacobian matrix, Jk

Jk =

(
∂u f − D0b2

k bk∂B1v f − D01b3
k

bk∂B>1 ug − D10b3
k ∂vg − D1b2

k

)
, (52)

whose spectrum determines the stability of the heterogeneous
perturbation and thus the possible onset of the instability.

The eigenvalues of Jk are determined by solving

det
(
∂u f − D0b2

k − λ bk∂B1v f − D01b3
k

bk∂B>1 ug − D10b3
k ∂vg − D1b2

k − λ

)
= 0 , (53)

which can be rewritten as

λ2 + λΓ̃1

(
b2

k

)
+ Γ̃2

(
b2

k

)
= 0 , (54)

where Γ̃1(b2
k) = Γ1(b2

k) is given by Eq.(35) and is then always
positive if the homogeneous equilibrium is stable. In this sce-
nario Γ̃2(b2

k) is a cubic polynomial in b2
k , given by

Γ̃2(b2
k) = ã3b6

k + ã2b4
k + ã1b2

k + ã0, (55)

with

ã3 = −D01D10, (56)
ã2 = (D0D1 + D01∂B>1 ug + D10∂B1v f ), (57)

and ã1 = a1, ã0 = a0. As for the case without cross-diffusion,
also in this setting, only stationary Turing patterns can be ob-
served.

We consider exclusively the situation in which we have
D01D10 < 0 which enforces the stability of modes correspond-
ing to large values of Λ0. In this case, the conditions to ob-
serve stationary Turing patterns are, in addition to (26), that
one of the two following inequalities needs to be satisfied

ã2 = D0D1 + D01∂B>1 ug + D10∂B1v f < 0,

ã1 = −
(
D1∂u f + D0∂vg + ∂B>1 ug ∂B1v f

)
< 0, (58)

together with

2D0D1K+ + D2
0D2

1 + K2
− > 0, (59)

where K± is given by

K± = D01∂B>1 ug ± D10∂B1v f (60)
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(see Appendix D for the derivation of these results).
Interestingly, from this study it emerges that for a cubic

Dirac cross-diffusion term, as long as D01D10 < 0 we can-
not observe the onset of the Turing instability for a reaction
term of the type F(Φ,DΦ) = F(Φ). Indeed in this case we
have ∂B>1 ug = 0 and ∂B1v f = 0 and hence neither one of the
conditions (58) can be satisfied when the stability condition
(26) holds.

C. Numerical results with a cubic Dirac cross-diffusion term

Let us now numerically validate the above analysis of
the reaction-diffusion system with cubic Dirac cross-diffusion
terms. By considering the benchmark model (41) with the ad-
dition of cubic Dirac cross-diffusion terms, we obtain

u̇ = −au − bu3 + cB1v − L0(D0u + D01B1v),
v̇ = −αv − βv3 + γB>1 u − L1(D1v + D10B>1 u). (61)

Let us assume conditions (26), (58) and (59) to hold true, and,
to be concrete, let us consider the case D01 < 0 and D10 > 0.
Assuming once again to work with the simplicial complex
used in the previous section, then Turing patterns can emerge
as shown in Fig. 5.a, where nodes and links, colored accord-
ing to the asymptotic values of ui and vi, clearly show a de-
pendence of the solution on the latter ones. In Fig. 5.c − e we
report the temporal evolution of ui(t), vi(t) and one can clearly
appreciate how far from the homogeneous state they are; a
similar result can be observed for their projections B>1 u and
B1v. Finally, the dispersion relation is presented in Fig. 5.b to
support the claim of short time instability.

V. CONCLUSIONS

In this paper we have formulated reaction-diffusion dynam-
ics of topological signals defined on nodes, links, and higher-
order simplices of simplicial complexes or cells of cell com-

plexes. In this framework, each species of reactants lives on
simplicies or cells of a given dimension, for instance in a sim-
plicial complex of dimension d = 2 one would consider three
kind of species living on nodes, links and triangles. Species
associated to simplices of different dimension can be coupled
thanks to the Dirac operator which projects a signal defined
on n-dimensional simplices either one dimension up or one
dimension down. In the proposed reaction-diffusion dynam-
ics, the coupling can then be enforced either by a Dirac reac-
tion term or/and Dirac cross-diffusion terms. After discussing
the general framework valid for simplicial and cell complexes
of arbitrary dimension, we focus on the reaction-diffusion dy-
namics of topological signals defined on networks, i.e., cou-
pling the dynamics between links and nodes, and we estab-
lish conditions for the onset of the Turing instability. The
latter conditions are derived when signals of different dimen-
sion are only coupled with the Dirac reaction term, as well as
when they are also coupled by a linear or a cubic Dirac cross-
diffusion term.

We have found that the Turing patterns arising from the
reaction-diffusion dynamics of topological signals are never
localized only on nodes or links of the network. Instead they
always involve both node and link signals. Moreover, the pro-
jection of the link signals on the nodes, and the projection of
the node signals onto the links are shown to also display a
Turing pattern.

We also observe that when the reaction term does not de-
pend on the projected signal, the Turing pattern can be ob-
served only in presence of a linear Dirac cross-diffusion term.

Our results are validated on a small toy model for the
reaction-diffusion of topological signal on a network, and on
simulations of square lattices with periodic boundary condi-
tions.
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Appendix A: Basics properties of algebraic topology

Simplicial and cell complexes, the boundary and coboundary
operators

A d-dimensional cell complex S is a collection of cells
whose dimension n is smaller or equal to d which is closed
under the inclusion of the cells’ faces. The n-dimensional
cells are convex polytopes of dimension n, i.e., for n = 0
they are nodes, for n = 1 they are links, for n = 2 they are
triangles, squares, pentagons etc. and for n = 3 they are tetra-
hedra, hypercubes, orthoplex etc. The faces of an n-cell are
the (n − 1)-dimensional cells at its boundary. A special case
of cell complex is a simplicial complex which is only formed
by simplices, i.e., cells whose underlying network structure
is a clique, such as nodes, links, triangles, tetrahedra and so
on. The cells of a cell complex are oriented and typically for
simplicial complexes the orientation of the simplicial complex
induced by the nodes label is used, for instance a link [i, j] is
positively oriented if i < j and similarly a triangle [i, j, k] and
all the triangles obtained by a cyclic permutation of the indices
are positively oriented if i < j < k. For more information
about simplicial and cell complexes see Refs.[15, 22, 84].
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Figure A1. Panel a) shows a simplicial complex on dimension 2,
with simplicial orientation induced by a labeling of the nodes. The
boundary of the 2-simplex [1, 2, 3] highlighted in panel Panel b) is
shown in panel c)

The topology of cell complexes can be investigated using
methods coming from algebraic topology. Let us indicate with
Nm the number of m-dimensional cells present in the consid-
ered cell complex. In algebraic topology the cells µ(m)

n of di-
mension n of a simplicial complex define the basis of a vector
space Cn of n-chains. Therefore a n-chain c ∈ Cn is a finite
linear combination of the n-cells µ(m)

n with 1 ≤ m ≤ Nn with

coefficients ci

c =

Nn∑
m=1

ciµ
(m)
n . (A1)

The boundary of a chain can be obtained from a chain by ap-
plying to it the boundary operator ∂n : Cn → Cn−1 which is
represented by the boundary matrix Bn

The boundary matrix Bn is a Nn−1 × Nn rectangular matrix
of elements [Bn]µ,µ′ = +1 if µ is a (n − 1)-dimensional face
of the n-cell µ with coherent orientation, [Bn]µ,µ′ = −1 if the
orientation is not coherent, and [Bn]µ,µ′ = 0 if µ is not a face
of µ′. In the particular case of B1, we have for instance

[B1]i` =


1 if ` = [ j, i] and j < i,
−1 if ` = [i, j] and i < j,
0 otherwise

(A2)

once we assume the orientation to be induced by the nodes
labels. As an example, the matrix B1 and B2 of the simplicial
complex shown in Fig. A1 are given by

B1 =

[1, 2] [1, 3] [1, 4] [1, 5] [2, 3] [3, 4] [3, 5]


[1] −1 −1 −1 −1 0 0 0
[2] 1 0 0 0 −1 0 0
[3] 0 1 0 0 1 −1 −1
[4] 0 0 1 0 0 1 0
[5] 0 0 0 1 0 0 1

and

B2 =

[1, 2, 3]



[1,2] 1
[1,3] −1
[1,4] 0
[1,5] 0
[2,3] 1
[3,4] 0
[3,5] 0

The set of all the boundary matrices Bn with 0 ≤ n ≤ d of
a simplicial complex fully encodes the topology of the sim-
plicial complex. The adjoint of the boundary operator or
coboundary operator is represented by the matrix B>n .

The Hodge-Laplacians and the Dirac operator of a cell complex

Starting from the boundary and the coboundary operators,
we define the higher-order Laplacians and the Dirac operator.

The Laplace operator [15, 66, 67] of order n, also called
n-Hodge-Laplacian, describes higher-order diffusion from n-
cells to n-cells and are Nn × Nn matrices defined as

Ln = B>n Bn + Bn+1B>n+1 = Ldown
n + Lup

n (A3)

for 1 ≤ n < d. For n = 0 and n = d the Hodge-Laplacians
L0 and Ld are respectively given by L0 = Lup

0 = B1B>1 and
Ld = Ldown

d = B>d Bd.
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The action of the Hodge-Laplacian can be interpreted as
follows. The term Lup

n represents the diffusion between n-cells
through shared (n + 1)-dimensional cells. In the case of a net-
work, as previously noticed, this is the combinatorial Lapla-
cian, where concentrations on nodes diffuse through incident
links. The term Ldown

n represents diffusion between n-cells
through shared (n−1)-cells, i.e., incident (n−1)-faces. For in-
stance in a network (i.e., a 1-simplicial complex) L1 = Ldown

1
determines diffusion from links to links through nodes.

From this definition, it is clear that the Hodge-Laplacian
of order n only acts on topological signals of dimension n.
Therefore the n-Hodge-Laplacian cannot couple signals of
different dimension.

In order to couple signal of different dimension, we require
the Dirac operator [68–71],D, which is encoded by an M×M
matrix where M =

∑d
n=0 Nn and has elements

Dµ,µ′ =

{
[Bn]µ,µ′ if |µ′| = |µ| + 1 = n
[B>n ]µ,µ′ if |µ| = |µ′| + 1 = n , (A4)

where with |µ| we indicate the dimension of the cell µ. It fol-
lows that in a two dimensional cell complex, the Dirac opera-
tor has the block structure

D =

 0 B1 0
B>1 0 B2
0 B>2 0

 , (A5)

while in a network the Dirac operator is given by

D =

(
0 B1

B>1 0

)
, (A6)

It follows that the Dirac operator, differently from the Hodge-
Laplacian, can couple topological signals of different dimen-
sion. In particular the Dirac operator can be used to project
a topological signal of any dimension n onto simplices of di-
mension n+1 and n−1. One of the most significant properties
of the Dirac operator is that it can be considered the “square
root” of the Laplacian. In fact we have

D2 = L = L0 ⊕L1 ⊕ . . . ⊕ Ld . (A7)

For instance, for a simplicial complex of dimension d = 2 we
have

D2 = L =

L0 0 0
0 L1 0
0 0 L2

 , (A8)

and for a network

D2 = L =

(
L0 0
0 L1

)
. (A9)

Interestingly, both the Hodge-Laplacians and the Dirac oper-
ator can be extended to treat weighted simplicial complexes
(see for instance [85]).

Major Spectral properties of the boundary operators, the
Hodge-Laplacians and the Dirac operator

The n-order Hodge-Laplacian [15, 66, 67] is a semi-definite
positive operator whose kernel has dimension equal to the n-
th Betti number βn, i.e., the degeneracy of its null eigenvalue
is equal to the Betti number βn. In addition to this, the Hodge-
Laplacians obey the Hodge decomposition which implies that
the space of n-chains can be decomposed as

Cn = im(B>n ) ⊕ ker(Ln) ⊕ im(Bn+1), (A10)

where the kernel of the Hodge-Laplacians are given by

ker(L0) = ker(B>1 ) ker(Ln) = ker(Bn) ∩ ker(B>n+1) . (A11)

The Dirac operator [68] has a kernel given by the direct sum
of the kernels of the Laplacians,

ker(D) = ker(L) = ker(L0)⊕ ker(L1)⊕ . . .⊕ ker(Ld). (A12)

The non-zero spectrum of the Dirac operator is formed by the
concatenation of the spectra of the Hodge-Laplacians taken
with positive and negative sign.

Let us now focus on the spectrum of the Hodge-Laplacians
L0 and L1 defined on a network, and reveal the relation be-
tween their spectrum and the singular values of the boundary
operator B1. Since L0 = B1B>1 and L1 = B>1 B1 it follows that
L0 and L1 are isospectral, i.e., they have the same non-zero
eigenvalues and any eigenvalue Λk

0 of L0 can be written as
Λk

0 = b2
k where bk indicates the non-zero singular eigenvalues

of the boundary matrix B1. We note however that the degen-
eracy of the zero eigenvalue Λ1

a = 0, a = 0, 1 is different for
L0 and L1. Indeed, for L0 the degeneracy of the zero eigen-
value is β0, i.e., the number of connected components of the
network, while for L1 it is given by β1, i.e., the number of in-
dependent cycles of the network. Therefore for a network that
has the topology of a linear chain with periodic boundary con-
ditions when N0 = N1, we have β0 = β1 = 1, for a tree when
we have N1 = N0−1 we have β0 = 1 and β1 = 0 and in general
for a connected network we have β0 = 1, β1 = N1−N0 +1. Let
us denote by ψk

a the eigenvector of La associated to the non-
zero eigenvalue Λk

a, for a = 0, 1, namely La ψ
k
a = Λk

aψ
k
a, then

we have by the properties of the singular value decomposition
applied to B1 that

B1ψ
k
1 = bkψ

k
0, B>1 ψ

k
0 = bkψ

k
1 . (A13)

Appendix B: Square Lattice with periodic boundary conditions

For this case of interest, where the cell complex is a d-
dimensional square lattice with periodic boundary conditions
(p.b.c.), interesting phenomena occur. For a rectangular por-
tion of a d-dimensional square lattice with linear size Lm in the
direction m, the eigenvalues and the eigenvectors of the graph
Laplacians L0 and L1 can be easily computed [15]. Indeed the
eigenvectors of L0 are the Fourier modes of the lattice asso-
ciated with wave number q = (q1, q2, . . . , qm, . . . , qd) and the
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eigenvalues of L0 can be expressed as

Λ0(q) = 4
d∑

m=1

sin2(qm/2). (B1)

The periodic boundary conditions impose

qm =
2π
Lm

n̂m n̂m = 0, 1, 2 . . . Lm − 1. (B2)

The analysis that has been carried out for the case presented
in the main text will let us to conclude that as soon as an
eigenvalue returns a positive dispersion law, i.e., λ(b2

k) > 0,
the corresponding eigenspace will be constituted by one peri-
odic eigenvector that spans the nodes and one, again periodic,
that spans the links. Consequently, as in the general case, the
arising instability cannot be confined to the space of nodes or
links, here too.

To be concrete, we have numerically analyzed the dynami-
cal system (41) defined on a 4 × 4 2-dimensional lattice with
p.b.c.. The results are depicted in Fig. B1: on the left column,
panels a), c) and e), refer to the case where there is single
unstable mode, while on the right column (panels b), d) and
f )), multiple unstable modes are allowed. Let us first observe
that the critical mode, i.e., the one associated to the largest
value of the dispersion relation, is the same for both parame-
ter configurations; we also remark that to each mode, except
for the 0-th one, there are associated several linearly indepen-
dent eigenvectors, four vectors in the case of a 4 × 4 lattice
with p.b.c.. When only one mode is unstable (see panel c) in
Fig. B1), we observe that the signal on the nodes exhibits a
(horizontal) striped-like pattern and the signals on the links
are non-zero only when the link connects nodes with different
signals values (Fig. B1a). Such ordered structure is destroyed
when multiple modes are unstable (Fig. B1b, d). When there
is a single unstable mode, the stationary pattern is a linear
combination of the 4 eigenvectors associated to such mode
(Fig. B1e); remarkably this continues to be true when more
than one mode is unstable (Fig. B1 f ).

Let us conclude by observing that the former result is a
slight generalization of the one we can found in [4], where
authors showed that in the case of a unique unstable and non-
degenerate mode, the patterns can be described by such eigen-
vector, despite the fact that they are the reflex of a nonlinear
process. Here we have shown that the same result holds true
if the unique critical eigenvalue possesses a high-dimensional
subspace spanned by several eigenvectors and even in the case
of multiple unstable modes.

Appendix C: Derivation of the conditions for the onset of Turing
pattern in presence of a linear Dirac cross-diffusion term

In this Appendix our goal is to derive the condition for
the onset of the Turing instability for the reaction-diffusion
dynamics with linear Dirac cross-diffusion term which we
rewrite here for convenience,

Φ̇ = F(Φ,DΦ) − γ̃DΦ − γLΦ. (C1)

We notice that by putting

F(Φ,DΦ) − γ̃DΦ = F̃(Φ,DΦ), (C2)

Eq.(C1) reduces to Eq.(20) with Dirac reaction term given by
F̃(Φ,DΦ), i.e. it reduces to

Φ̇ = F̃(Φ,DΦ) − γLΦ. (C3)

It follows that the conditions for the onset of the Turing insta-
bility can be obtained directly from Eq. (38) and Eq. (39) by
making the substitutions

∂B1 v f → ∂B1 v f − D01, ∂B>1 ug→ ∂B>1 ug − D10. (C4)

This allows us to obtain that in the case with linear Dirac
cross-diffusion terms we can observe the onset of the Turing
instability when in addition to Eq.(26), the following two con-
ditions are satisfied:

A = D0∂vg + D1∂u f + (∂B1 v f − D01)(∂B>1 ug − D10) > 0,

A2> 4D0D1∂u f ∂vg. (C5)

Appendix D: Derivation of the conditions for the onset of Turing
pattern in presence of a cubic Dirac cross-diffusion terms

In this Appendix we derive the condition for the onset of the
Turing instability in presence of a cubic Dirac cross-diffusion
term. The Turing instability is observed when the eigenvalue
λ satisfying (54) is positive. Let us note that the second order
equation (54) has both leading coefficients positive. Accord-
ing to Descartes’ rule of signs, this equation only admits a
positive root if Γ̃2(b2

k) < 0. Consequently, a positive disper-
sion on a finite number of modes can be guaranteed by requir-
ing that Γ̃2(b2

k) < 0 on a finite range of b2
k .

First of all, we need to ensure that Eq. (54) admits no positive
root in the limit b2

k → ∞ to avoid long wavelength instability.
This can only be guaranteed if we impose that D01D10 < 0.
This ensures that there is a b̄2

k such that Γ̃2(b2
k) > 0 for all

b2
k > b̄2

k . Note that D01,D10 are not diffusion coefficients
but cross-diffusion coefficients. Indeed they are coupling each
signal with the projection of the signal defined on a different
dimension. For this reason we do not need to limit the values
of D01 and D10 to be positive and we can allow negative val-
ues while still retaining their physical meaning.
Requiring the existence of positive roots in λ over a finite
range of b2

k < b̄2
k can be done again by studying the roots of

Γ̃2 using Descartes’ rule of sign, remembering that the lead-
ing and the last coefficients of Γ̃2(b2

k) are positive (+). As
Γ̃2(b2

k) > 0 in the limit b2
k → ∞, we require that Γ̃2(b2

k) admits
a positive root in b2

k to ensure that the system obeys all condi-
tions required for the existence of Turing patterns.
A change in sign in the coefficients of Γ̃2(b2

k) is a necessary
condition to guarantee this, which leads to patterns of signs
(+−−+), (+−++), (++−+). All these have two sign changes.
Hence, applying the rule of sign, Γ̃2(b2

k) can admit either 2 or
0 real positive roots. We now need to find a condition to ex-
clude the case of 0 positive roots.
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Figure B1. Model (41) on a 4 × 4 2-dimensional lattice with p.b.c. The periodicity of lattice, shown in panels a) and b), is represented by
adding one column and one row, so that the displayed nodes are 25, but effectively they are 16. Panels on the left show the case where only
one mode contributes to the instability, while those on the right where multiple modes are unstable, as shown by the dispersion laws in panels
c) and d), respectively. When only one mode is unstable, the nodes’ pattern is striped-like, while the signal on the links is non-zero only when
the given link connects two nodes with different signals, as shown in panel a); on the other hand, when multiple modes are unstable, such
regular structure is lost, as we can see in panel b). Panels e) and f ) show a comparison of the nodes’ pattern with a linear combination of the
eigenvector associated to the critical mode(s), showing a good accordance. The model parameters are a = α = b = β = γ = D0 = D1 = 1;
c = 4.7 for panels a), c), e), while c = 7.3 for panels b), d), f ); the initial perturbation is ∼ 10−2.
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To do so, we start by using the rule of sign for the polynomial
of opposite sign, Γ̃2(−b2

k), which yields the number of negative
rules of Γ̃2(b2

k). The possible sign patterns (+−−+), (+−++),
(+ + −+) respectively become (− − ++), (− − −+), (− + ++).
These all have a single sign change. Hence, by the rule of
sign, Γ̃2(−b2

k) has exactly one positive root. Consequently,
Γ̃2(b2

k) has exactly one negative root, provided the coefficients
fall into one of the cases (+ − −+), (+ − ++), (+ + −+).
The last condition can be obtained using the cubic discrimi-
nant of Γ̃2(b2

k). Indeed, in the above three possible cases, we
are guaranteed to have a single negative root. There can be 0
or two positive roots. Guaranteeing two positive roots can be
done by imposing that all roots are distinct, and this can be
achieved by setting the discriminant of Γ̃2(b2

k) to be positive.
Mathematically, this corresponds to first imposing that one of

the following two conditions are satisfied

D0D1 + D01∂B>1 ug + D10∂B1v f < 0, (D1)
D1∂u f + D0∂vg + ∂B1

>
1 ug ∂B1v f < 0, (D2)

which constrain the polynomial to one of the above sign pat-
terns, and ensures and the presence of one negative root and
either one or two positive roots. By imposing that the three
roots are distinct mathematically through the discriminant of
Γ̃2(b2

k) leads to the condition

2D0D1K+ + D2
0D2

1 + K2
− > 0, (D3)

where K± is given by

K± = D01∂B>1 ug ± D10∂B1v f (D4)
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