
Chaos, Solitons and Fractals 168 (2023) 113128

A
0
n

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Recurrent Spectral Network (RSN): Shaping a discrete map to reach
automated classification
Lorenzo Chicchi a, Duccio Fanelli a,∗, Lorenzo Giambagli a,b, Lorenzo Buffoni a,c, Timoteo Carletti b

a Dipartimento di Fisica e Astronomia, Università di Firenze, INFN and CSDC, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
b naXys, Namur Center for Complex Systems, University of Namur, rue Grafé 2, B 5000 Namur, Belgium
c Physics of Information and Quantum Technologies Group, Instituto de Telecomunicacoes, University of Lisbon, Portugal

A R T I C L E I N F O

Keywords:
Machine learning
Dynamical systems
Spectral learning

A B S T R A C T

A novel strategy to automated classification is introduced which exploits a fully trained dynamical system to
steer items belonging to different categories towards distinct asymptotic target destinations. These latter are
incorporated into the model by taking advantage of the spectral decomposition of the operator that rules the
linear evolution across the processing network. Non-linear terms act for a transient and allow to disentangle
the data supplied as initial condition to the discrete dynamical system. The system effectively aligns along
assigned directions, which reflect the specificity of the provided input and that are encoded in the loss function
via suitable spectral projections. The network can be equipped with several memory kernels which can be
sequentially activated for serial datasets handling. Our novel approach to classification, that we here term
Recurrent Spectral Network (RSN), is successfully challenged against a simple test-bed model, created for
illustrative purposes, as well as a standard dataset for image processing training.
1. Introduction

Machine learning (ML) technologies are becoming increasingly pop-
ular due to their inherent degree of transversal adaptability, which
transcends different realms of applications [1–7]. Multi-layered feed-
forward neural networks, notably the most basic architecture schemes,
are routinely employed to cope with a large plethora of case studies
and test-bed models. ML seeks at solving an optimization problem,
upon minimization of a suitably defined loss function which confronts
the expected target to the output produced at the exit layer, after a
nested sequence of linear (across layers) and non-linear (punctually
localized on the nodes) manipulations of the data supplied as an
entry. The target of the optimization are the weights of the links that
connect pair of nodes belonging to adjacent stacks of the multi-layered
arrangement, in a fully coupled setting. An alternative training scheme
has been recently proposed which anchors the learning to reciprocal
domain [8,9]: the eigenvalues and the eigenvectors of the transfer
operators get adjusted by the optimization. Spectral learning, so far
engineered to deal with a feedforward organization, identifies key
collective variables, the eigenvalues, which are more fundamental than
any other (randomly selected) set of identical cardinality, allocated
in direct space. Extending the learning to include the eigenvectors
enhances the ability of the network to carry out the assigned task.

∗ Corresponding author.
E-mail address: duccio.fanelli@gmail.com (D. Fanelli).

Delving into the principles of the spectral methodology, we here
propose a radically novel approach to computational machine learning
which is deeply rooted into the theory of discrete dynamical sys-
tems. In a nutshell, the incoming signal is processed by successive
iterations across the very same constellation of nodes. The links, and
thus the topology of the ensuing network, are fixed and shaped un-
der the spectral paradigm, upon optimization at a given number of
iterations. Non-linearities acting on the nodes are imposed a priori
or, conversely, learned self-consistently via an apposite deep neural
network, which is embedded into the cost function. In either settings,
non-linear terms acting in real space at the nodes locations, are forced
to vanish asymptotically, iteration after iteration, in such a way that the
dynamics eventually turns purely linear. The linear operator, mirroring
the processing network, possesses a high dimensional attracting linear
manifold spanned by the eigenvectors associated to the eigenvalues
equal to one. These latter come in a number that matches the classes
to be eventually categorized. A suitable non linear spectral filter is
enforced in the loss function to project the ensuing direction along
a given eigenvector, assumed as the destination target of a class of
homologous entities and selected from those displaying unitary eigen-
values [10]. Stated differently, the classification is accomplished when
the processed output - approximately - aligns along a specific direction
in dual space, instead of turning active a single node in direct space,
vailable online 17 January 2023
960-0779/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.chaos.2023.113128
Received 18 July 2022; Received in revised form 19 December 2022; Accepted 7 J
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

anuary 2023

https://www.elsevier.com/locate/chaos
http://www.elsevier.com/locate/chaos
mailto:duccio.fanelli@gmail.com
https://doi.org/10.1016/j.chaos.2023.113128
https://doi.org/10.1016/j.chaos.2023.113128
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2023.113128&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.

a

w
o
f
t
1

a

𝑓

d
𝛾
𝛾
e
c
H
W
a

e
e
𝑖
w
s
s

s
i
a
e
t
t
i
d
s
i
c
p
l
d

t
o
a
e
𝜙
i

as customarily done. This formulation yields a rather natural interpre-
tation of the classifier operational mode: non-linearities, acting at the
early stages of the dynamical evolution, drive the discrete dynamical
system towards distinct effective stationary equilibria, self-consistently
sculpted across the learning scheme and associated to different classes
of supplied items. Delineating the non-trivial contours that separate the
inspected classes in the input space constitutes the tangible outcome of
the learning scheme. Remarkably, the trained dynamical system can be
iterated forward in time, beyond the limited horizon of the learning
procedure: the ability of classifying stays unchanged. The eigenvectors
associated to eigenvalues equal to one, are hence veritable memory
kernels where the information is kept stored. We name Recurrent
Spectral Network (RSN) our novel approach to automated classification
via sculpting the attracting invariant subspace of a discrete dynamical
map.

Points of connections are found with the framework of reservoir
computing. In this latter case, input signals are mapped into higher
dimensional computational spaces through the dynamics of a fixed,
non-linear system termed reservoir [11–13]. Within the RSN, the bulk
model is not fixed but self-consistently tailored to the assigned task.

A straightforward variant of the RSN recipe, which accounts for
quasi-orthogonal eigen-directions for each processed task, can be also
introduced. This latter enables for the sequential handling of different
datasets. In simple terms, an artificial computing unit can be assembled
which keeps memory of a task, for which it was initially trained, while
being exposed to another training session, with an independent dataset
to be processed. This is at present arduous with standard approaches
to machine learning, as the second learning stage causes the so-called
catastrophic forgetting taking over any form of digital consciousness in-
herited from the first [14–16]. Few attempts have been so far reported
which aim at overcoming this limitation [17–19].

The paper is organized as follows. In the next Section we introduce
the mathematical notation and the relevant model setting. Then, in
the subsequent Section, we will turn to considering a simple example
of a dataset defined in R2 that will prove useful for clarifying the
essence of the proposed methodology. In particular we will show,
that the system can effectively trace the boundaries that non-linearly
separate different classes within a given datasets. Each class is evolved
towards a distinct target, that we identify with a specific direction
of the attracting subspace possessed by the underlying linear system.
Further, we will proceed by applying the proposed technique to the
celebrated MNIST dataset [20]. We will also show that the RSN can
also handle multiple datasets with a modest drop in the peak accuracy,
and following sequential stages of learning. Finally, we will sum up and
draw our conclusions.

2. The mathematical foundation

Consider 𝑁 isolated nodes. Our aim is to assign weighted links
among the latter, in such a way that the ensuing network can cope with
the assigned task, as e.g., classification of different items in distinct
categories. Here, 𝑁 can coincide with the number of input variables
(e.g., the pixels of a supplied image): in this case, the nodes where
reading is performed match the units where calculations are carried
out. This is at variance with usual feedforward deep neural networks,
where the information to be processed flows from the input to the
output, the collection of computing neurons growing with the number
of layers that define the underlying architecture [5–7]. Working within
the proposed framework, the topology of the network will unfold as an
emerging byproduct of the optimization procedure. As we shall discuss,
𝑁 can be larger than the characteristic dimension of the input data, a
setting that we will specifically assume when dealing with the problem
of sequential learning, with dedicated memory kernels.

Denote by �⃗�(0) the input vector, made of 𝑁 entries organized in
a column. The idea that we shall hereafter develop is to set up a
recursive scheme, the Recurrent Spectral Network (RSN), that takes �⃗�(0)
2

i

as the initial condition and transforms it via successive iterations into a
stationary stable output. This latter should somehow reflect the specific
traits of the input items, as identified self-consistently upon dedicated
training sessions. Different objects should eventually align along dis-
tinct directions of the attracting manifold, depending on the category
of specific pertinence. Stated differently, the multidimensional space
where the examined objects belong to gets partitioned in mutually
exclusive portions, as tailored by suited non-linearities, each associated
to a definite asymptotic destination. In the following, we shall label
with 𝑛 the number of independent target directions, namely the number
of independent classes in which the inspected dataset can be eventually
partitioned.

Assume �⃗�(𝑘) to represent the image of the input vector �⃗�(1) after 𝑘
pplication of the iterative scheme. Then:

�⃗�(𝑘+1) = 𝑓𝑘
(

𝐀�⃗�(𝑘)
)

(1)

here 𝐀 is a 𝑁 ×𝑁 weighed adjacency matrix that defines the patterns
f interactions among nodes; 𝑓𝑘(⋅) is a non-linear (𝑁- dimensional)
unction that depends on the iteration parameter 𝑘 and which acts at
he level of individual nodes. We require in particular lim𝑘→∞ 𝑓𝑘 →
⃗ ≡ (1, 1,… , 1)𝑇 , in such a way that, for large enough 𝑘, the system
pproximately follows a linear update rule. This is achieved by setting:

�⃗�(⋅) = 1⃗ +
𝑔(⋅)
𝑘𝛾

(2)

where 𝑔(⋅) is a non-linear function which can be imposed a priori or
etermined self-consistently via a neural network regression model and
is a parameter that can be freely adjusted (here we chose to set
= 1.5). Focus now on the linear component of the dynamics, as

ncapsulated in matrix 𝐀, which takes over for sufficiently large 𝑘. We
ast in particular 𝐀 = ΦΛ (Φ)−1, by invoking spectral decomposition.
ere, Λ is the diagonal matrix of the eigenvalues (𝜆1, 𝜆2,… , 𝜆𝑁).
orking in the spectral domain enables us to enforce 𝑛-dimensional

ttracting subspace. To this end, we impose 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑛 = 1,
and assume |𝜆𝑖| < 1 for 𝑖 > 𝑛. These latter 𝑁 − 𝑛 quantities are among
the target of the optimization scheme. Moreover, we assume 𝜙1, 𝜙2,
. . . , 𝜙𝑛, namely the eigenvectors relative to the eigenvalues identically
qual to one, to identify frozen linearly independent directions of the
mbedding 𝑁-dimensional space. The remaining eigenvectors (𝜙𝑖, with
> 𝑛, relative to eigenvalues 𝜆𝑖) can be freely adjusted, so contributing
ith a total of (𝑁 − 𝑛) × 𝑁 tunable parameters to the optimization

cheme. When 𝑘 ≫ 1, non-linear terms fade away and the iterative
cheme converges to a linear map, �⃗�(𝑘+1) ≃ 𝐀�⃗�(𝑘).

By definition, 𝜙𝑖, with 𝑖 ≤ 𝑛 are stationary solutions of the above
ystem. This latter is hence associated with a high dimensional attract-
ng invariant manifold: any linear combination of 𝜙𝑖 with 𝑖 ≤ 𝑛 is in fact
stationary solution of the linear dynamics that is approached by the

xamined non linear system, for large enough iterations 𝑘. By acting on
he collection of tunable spectral parameters, which ultimately echo on
he topology of the network made of 𝑁 computing nodes, and exploit-
ng the non-linearities that act over a finite transient, we aim at steering
ifferent input objects towards distinct target solutions, which can be
tably maintained beyond the limited horizon of the performed train-
ng. To rephrase in words, we postulate that any generically complex
lassification task is eventually amenable to a multi-dimensional linear
roblem, with properly tuned interactions strengths and provided non-
inearities, imposed or self-consistently learned, are made to initially
eform the features landscape.

To implement the learning scheme on these basis, we consider �⃗�(�̄�),
he image on the output layer of the input vector �⃗�(0) after �̄� iterations
f the iterative algorithm, where �̄� is sufficiently large for the linear
pproximation to hold true. Then, we calculate 𝑐�̄� = (Φ)−1 �⃗�(�̄�): the 𝑖th
lement

(

𝑐�̄�
)

𝑖 represents the projection of �⃗�(�̄�) along the eigen-direction
⃗𝑖. Each element of the training set is associated to a label 𝓁 ≤ 𝑛 to
dentify the category to which �⃗�(0) belongs to. Then, an optimization

s carried out which seeks at minimizing the squared distance of 𝑐�̄�

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
(that implicitly depend on the training parameters) with a target 𝑛-
dimensional column vector 𝑐𝓁 , made by zeros except for the element
in position 𝓁 which is set to unit. In such a way, we require that after
sufficiently many iterations the dynamical map aligns (as much as pos-
sible) along the direction 𝜙𝓁 , where 𝓁 identifies the class to which the
supplied entry refers. Different initial conditions, decorated with their
reference labels pointing to one of the 𝑛 classes, are forced (by a proper
use of the non-linearities, as vehiculated by the network arrangement)
to yield different asymptotic equilibria, which approximately align
along distinct directions in reciprocal space. A perfect alignment along
the eigen-modes that flag distinct classes can be eventually forced by
performing a projection along the most represented direction, at the
end of the iterative update.

Operatively, we begin by initializing the trainable portion of the
eigenvectors matrix Φ with a random uniform distribution of the
assigned entries. Similarly, for the 𝑁 − 𝑛 trainable eigenvalues that
enter the definition of matrix Λ. Then, we define a global model (via
Tensorflow [21]) that implements a chain of successive applications of
the linear mapping 𝐀. Each linear transfer is followed by the application
of the non-linear filter as specified by Eq. (2), which acts at the nodes
location. Matrix 𝐀 is written in terms of its spectral decomposition by
composing together the three matrices (Φ)−1, Λ and Φ, as introduced
above. The number of iterations is set to �̄�, a parameter supplied as an
input. After iteration �̄�, we apply one more time matrix (Φ)−1 to obtain
the coefficients 𝑐�̄� that enter the definition of the loss function. The
trainable weights of the model are updated according to the gradient
descent rule, the loss function gradients being estimated via a standard
backpropagation algorithm.

In the following Section, to challenge the effectiveness of the pro-
posed recipe, we set to study a simple dataset defined in R2, which
bears pedagogical interest. We will then turn, in a subsequent Section,
to examining the ability of the RSN methodologies to cope with a
standard datasets of image.

3. Testing RSN: A simple dataset in R𝟐

As mentioned above, we aim at testing the RSN as outlined above
against a simple dataset, created for this specific purpose. The goals are
twofolds. On the one side, we wish to provide the first consistent imple-
mentation of the procedure, by showing that a dynamical system can
be trained which preserves its ability to discern beyond the horizon of
the training (as instead it is the case for conventional recurrent neural
networks). This is an indirect mark of the imposed convergence towards
an asymptotic equilibrium, inherent to the dynamical scheme, which
flags the class to be identified. Then, we shall convincingly demonstrate
that classification by RSN amounts to segmenting the space of the
initial conditions in disconnected domains, each pointing to a distinct
asymptotic direction, within the invariant attracting manifold. Indeed,
the trained map will make a single target mode, representative of the
processed class, to stand out as compared to the other. The degree of
alignment as observed empirically improves with the complexity of the
explored dataset, as we shall remark in the following section. A perfect
alignment can be forced by means of a suitable non-linearity that
implements a punctual projection along the most represented direction,
at final iteration.

The dataset that we shall here consider as a proof of concept is
composed by two sets of points, laying on the plane. The points falling
inside the unitary circle, centered at the origin, define the first class
(displayed in yellow, in Fig. 1). Those situated outside the circle and
inside a square domain of linear width 𝐿 =

√

2𝜋, contribute to the
second reservoir of datapoints (shown in blue, in Fig. 1). The size of
the square has been chosen in such a way that the surface of the two
regions where the dataset insists is equal. The two sets are divided by
a non-linear boundary that coincides with the perimeter of the unitary
circle. Our objective is to train a RSN, following the prescriptions of
the preceding Section, so as to associate any given point — randomly
3

Fig. 1. The dataset used as a validation test for the RSN scheme. Points populate two
different regions, of equal relevance, separated by a sharp non-linear boundary, which
we identify as the unitary circle. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

generated to belong to the square domain of width 𝐿 - to its reference
portion, as introduced above.

For the sake of definiteness we cast 𝑁 = 10. Every point of
coordinates (𝑥, 𝑦) (constrained so as to fall inside the square of linear
size 𝐿) yields an initial condition for the RSN that we wish at training,
i.e., �⃗�(1) = (𝑥, 𝑦, 0, 0, 0, 0, 0, 0, 0, 0). During the training stage, we gen-
erate a sufficiently large reservoir of (𝑀) points, each complemented
with a scalar label that specifies the class, or domain, where the
corresponding point falls. The first two eigenvalues of Λ are set to
unit and the corresponding eigenvectors, respectively 𝜙1 and 𝜙2, are
fixed and identify randomly selected (linearly independent) directions
in R10. The eigenvalues 𝜆𝑖, as well and the entries of the vectors 𝜙𝑖, for
𝑖 > 2, contribute to the pool of parameters that one can freely adjust
during optimization. Moreover, and to test the method in its general
formulation, we do not impose a priori the non-linear function 𝑔(⋅) (the
very same function for each node of the RSN). Rather, we represent
𝑔(⋅) as a two layered neural network, whose parameters are to be self-
consistently adjusted during optimization. Each of these latter layers
is made of 30 neurons and nodes are entitled with a tanh activation
function. We label with �̄� the number of iterations of the RSN, assumed
during training. Recall that we will also be interested in assessing the
behavior of the fully trained systems for 𝑘 > �̄�. In the following �̄� = 60.
The number of epochs is set to 200 and an early stopping technique
has been employed.

In Fig. 2, the test-accuracy and the corresponding loss are plotted
for 𝑘 < �̄� and for �̄� < 𝑘 < 100. As it can be visually appreciated, the
accuracy (and the loss) is stable for 𝑘 > �̄�, i.e., when extending the RSN
beyond the iteration number assumed for training.

The trained RSN classifies points (𝑥, 𝑦) ∈ R2, provided as an input,
by generating a late time output in R10 which tentatively aligns along
different target directions: points in the plane contained within the
unitary circle with center in the origin, should predominantly activate
the spectral mode 𝜙1. In this case, 𝑐1 is thus expected to stand out, as
compared to all others coefficients, after sufficiently many iterations.
At variance, points falling outside the unitary circle are dynamically
driven towards a final equilibrium which selectively favors the eigen-
direction 𝜙2. The coefficient 𝑐2 should therefore prevail over the others.
This scenario is confirmed by inspection of Fig. 4, where 𝑐1 and 𝑐2 are
plotted against the iteration number for data points falling respectively

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
Fig. 2. Accuracy (in red) and loss (in blue) against the iteration 𝑘, for a trained RSN with �̄� = 60 (vertical dashed line). Data refer to just one realization of the training procedure.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. The evolution of the coefficients 𝑐1 (orange) and 𝑐2 (green) is plotted for points of the test set positioned respectively inside (top panel) and outside (lower panel) the
unitary circle. The shadowed region points to the standard deviation of the collected signal when averaging over the population of supplied input, organized in groups which
reflect their domain of pertinence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
inside (top panel) and outside (lower panel) the unitary circle. Different
classes are hence flagging distinct solutions, as stipulated a priori. It
is worth recalling that any direction obtained as a linear combination
of 𝜙𝑖 with 𝑖 = 1, 2, is also, by construction, a stationary solution of
the RSN. This is why a residual activation of the other modes – those
relative to eigenvalues one but different from that identified as the
target for the class under scrutiny – can in principle manifest when
the RSN is challenged against the test-set. A projection along the most
represented eigen-mode would enforce a perfect alignment along the
sought target direction, with no impact on the performance of the
trained device (see Fig. 3).
4

The above analysis carried out for a simple benchmark model
allowed us to grasp some intuition on the decision making scheme as
implemented via the dynamical RSN. Classification is here synonym
of convergence towards a specific direction of the attracting manifold.
This latter direction is flagged as the destination target of the dynamics,
for a homogeneous ensemble of input items. Different classes are
hence associated by the RSN to the eigen-directions of 𝐀 associated to
eigenvalues equal to one. For the case at hand, the separatrix between
the domains in R2 which defines the two classes to be eventually
identified matches the unitary circle. To show that the RSN is able to
correctly spot out the non-linear separation between the two contiguous
domain in R2, and so resolve the distinctive features of the dataset

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
Fig. 4. The quantities ⟨𝑐𝑖⟩ for 𝑖 = 1, 2, 6 and ⟨𝑐⟩ are plotted, for different (𝑥, 𝑦), i.e moving on the plane of the initial condition. Top panels refer to 𝑘𝐹 = 5, 𝑘𝐼 = 1. Lower panel
to 𝑘𝐹 = 50, 𝑘𝐼 = 40. The separatrix between the two considered classes (which coincides with the unitary circle centered at the origin) is sensed, at short times, by the transient
directions. The projections of the generated output along these latter directions fade asymptotically away and the existence of the two classes, as well as the relative domain of
definition, leave an imperishable trace in ⟨𝑐1⟩ and ⟨𝑐2⟩. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
under exam, we consider ⟨𝑐𝑖⟩, the average of the 𝑖th coefficient, across
successive phases of the RSN evolution and for different input choices
(𝑥, 𝑦) ∈ R2. More specifically, ⟨𝑐𝑖⟩(𝑥, 𝑦) =

1
𝑘𝐹−𝑘𝐼

∑𝑘𝐹
𝑘=𝑘𝐼

(𝑐𝑘)𝑖(𝑥, 𝑦), for all

specific coefficients 𝑖 - including those which will fade away after a
transient -and as function of the departure point. In Fig. 4 the computed
coefficients are displayed in the reference plane (𝑥, 𝑦), with an apposite
colorcode and for different choices of (𝑘𝐼 , 𝑘𝐹). The panels on the top
refers to the initial stages of the evolution (𝑘𝐹 = 5, 𝑘𝐼 = 1): the
separation between the two classes here considered leaves a clear
imprint in the distribution of the ⟨𝑐𝑖⟩ (in particular those with 𝑖 > 2)
across (𝑥, 𝑦) (in Fig. 4 we plot ⟨𝑐6⟩, as an illustrative example as well
as ⟨𝑐⟩ =

(

∑10
𝑖=3⟨𝑐𝑖⟩

)

∕8). An abrupt transition is indeed observed for
⟨𝑐𝑖⟩, with 𝑖 > 2, when crossing the unitary circle, namely the separatrix
between the two adjacent classes that defines our test model. For
small 𝑘𝐹 (see top panels), the aforementioned coefficients are in fact
remarkably different inside and outside the separatrix. On the other
hand, for large 𝑘𝐹 , they are spatially uniformly vanishing (see lower
panels, referred to 𝑘𝐹 = 50, 𝑘𝐼 = 40). The patterns associated to ⟨𝑐1⟩ and
⟨𝑐2⟩ are less clear, at short times, but become evidently distinct when
the iterations number is made to increase (see lower panels). Transient
modes (those associated to eigenvalues with magnitude smaller than
unit) are employed for an early assessment of the examined dataset and
get progressively disengaged, at later times. The processed information
is in fact passed over the stationary directions, where it is eventually
crystallized for classification purposes. Averaged projection coefficients
can be employed to trace out, in direct space, key distinctive features
that form the basis of decision making. It is here speculated that this
is a general attribute of the RSN that can be exported to other, more
complex, settings for an a posteriori understanding of the principles
that guide artificial reasoning. As a side complement, in Fig. 5 we depict
the non-linear function 𝑔(⋅) self-consistently obtained via the regression
neural model accommodated for in the RSN. In this specific case, it
looks like an inverted ReLu (a rectified linear unit) with an additional
offset.

Building on these preliminary observations, we will turn in the next
Section to considering the application of RSN to MNIST dataset.

4. Applying RSN to the MNIST dataset

As a further step in the analysis, we apply the RSN to the celebrated
MNIST dataset [20]. This is a collection of handwritten digits: the train-
ing set consists of 60,000 examples, and a test set of 10,000 examples.
Each image is made of 𝑁 = 28 × 28 = 784 pixels and each pixel bears
5

an 8-bit numerical intensity value. The images are to be classified in 10
distinct groups (the numbers from 0 to 9). Each element of the training
set is associated with an integer label to point to the class to which the
selected image belongs to. In the following we will set to train a RSN
made by 𝑁 = 784 nodes: the nodes that receive the information as an
input are the very same nodes that carry out the classification, through
a dynamical segmentation that originates from the underlying RSN.
The network of excitatory (positive weight) or inhibitory (negative
weight) interactions is shaped by the optimization scheme which seeks
at adjusting the non trivial eigenvalues and eigenvectors of matrix Φ.
The first 10 eigenvalues are set to unit, as in the spirit of the above,
and refer to the eigen-directions employed for discrimination. These
latter eigenvectors are a priori fixed and can be engineered so as to
return evocative patterns in the space of the inspected images, as we
shall demonstrate in the following. Further, we assume 𝑔(⋅) = tanh(⋅),
for the sake of simplicity. Summing up, we can count on a total of
𝑁 × (𝑁 − 10) + (𝑁 − 10) adjustable parameters to yield a fully trained
RSN which can efficiently classify MNIST images.

In Fig. 6, we challenge the ability of the trained RSN to discern
images of the test set that respectively corresponds to four (top panel)
and five (lower panel). In the former case, as expected, 𝑐4 (depicted
in orange) sticks out as the only residual coefficients after sufficiently
many iterations of the RSN machinery. All other coefficients (including
𝑐5, plotted in green) are eventually bound to almost disappear, thus
implying that all items belonging to the very same reservoir of images
align along a specific direction that can be here traced back to one
individual eigen-mode. Remarkably, all coefficients – except for the one
that stands for the selected direction – become rapidly negligible. The
system is hence directed towards the chosen asymptotic state, without
forcing the projection. The shadowed regions that are associated to
each average curve refer to the degree of variability inherent to the
examined gallery of images. The lower plot in Fig. 6 shows the response
of the RSN when the images displaying a number five are read as
an input, and the interpretation is in line with the above. In both
cases, the training is performed by arresting the RSN at iteration
�̄� = 10: the outcome is however stably maintained well beyond the
training horizon, with a modest, although significative in terms of its
philosophical implications, improvements in terms of confidence of the
assessment. When it comes to the overall performance, the accuracy on
the train set is of about 98%, while on the test set the RSN scores 97%,
in line with what usually reported when using conventional approaches
to machine learning.

Fig. 7 illustrates the progressive convergence of the scheme, for two
distinct exemplaries of input images. The RSN converges asymptotically

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
Fig. 5. The non-linear function 𝑔(𝑥) as obtained from the regression neural model that is associated to each computing neuron of the RSN.
Fig. 6. Top panel: the full set of handwritten four available in the test set is provided as an input to the trained RSN and the response monitored in terms of the obtained 𝑐𝑖, with
𝑖 = 1,… , 10. As expected, 𝑐4 (orange) emerges and converges to unit, for 𝑘 > 10 (�̄� = 10 being the maximum iteration number set during training). All other coefficients, including
𝑐5 (green) disappear. Lower panel: the situation is analogous to that analyzed in the top panel with the notable exception that now handwritten five are analyzed by the RSN.
Hence, 𝑐5 (green) converges to unit while, 𝑐𝑖 with 𝑖 ≠ 5 (including 𝑐4, in orange) fade away. In both cases, the shadowed regions reflect the variability of the images, within any
given class of the test set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
to the deputed solutions, which respectively correspond to eigenvectors
𝜙4 (left) and 𝜙5 (right). The entries of these latter eigenvectors are
shaped so as to return a stylized version of the digits that define the cat-
egories in which the dataset is partitioned. The outcome of the analysis
is hence a stationary stable image, the plastic modulation of the input
that is dynamically steered towards a final destination shaped at will by
the operator. It is worth stressing that the performances of the method
are not affected by the specificity of the target eigenvectors. Stated
differently there is no need for them to align with the category that we
aim at identifying. Any random eigenvectors would equivalently serve
the scope.
6

As mentioned earlier, a specific advantage of the RSN model is
the ability to keep memory of the final state for 𝑘 > �̄�. This is a
byproduct of the fact that, for sufficiently large times, the non-linear
activation terms are virtually silenced and the update rule converges to
a simple linear scheme. The dynamics aligns by construction towards
stationary directions of the linear mapping, and this makes it possible
to operate the RSN for any 𝑘 larger than the training horizon �̄�. As a
benchmark model, we consider a standard Recurrent Neural Network
(RNN) trained in direct space [22–24]. The RNN in its simplest version
is conceived as a single transfer layer between two adjacent stacks made
of 𝑁 = 784 nodes, iterated 𝑘 times (recognition is performed on the first

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
Fig. 7. In each row we plot the activity on each node of the RSN, at different iterations
and for two input numbers that belong to two distinct categories, respectively a four
(left) and a five (right), see top panels. After a few iterations the RSN converges
asymptotically to the eigenvectors 𝜙4 (left) and 𝜙5 (right) that are triggered by the
provided input. Note that the asymptotic solutions can be shaped to manifest as a
stylized version of the number to be classified. The more yellow the pixels, the more
intense the activity on the associated nodes. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

10 nodes of the final layer). The number of trainable parameters is thus
𝑁 ×𝑁 , comparable to the number of parameters adjusted by the RSN
model. In Fig. 8, we compare the accuracy measured for the MNIST
dataset, for both the RSN and the RNN trained upon completion of
iteration �̄�. The accuracy recorded for the RSN (red symbols) converges
rapidly and the achieved score is stably maintained for 𝑘 > �̄� (here
�̄� = 5). Conversely, the RNN (blue symbols) returns its largest accuracy
(basically identically to that obtained with the RSN) only for 𝑘 = �̄�.
By taking just one step further (i.e. adding one additional layer to the
RNN) is enough to lose predictive power.

As also shown for the case of the simple model discussed in the
preceding session, there is a progressive tendency to crystallize the
final output along the eigen-directions, where recognition is eventually
performed. This observation can be made quantitative — see Fig. 9 - by
monitoring the evolution of the coefficients 𝑐𝑖, as computed from the
state vector across successive iterations. In particular, three sets of 𝑐𝑖
are identified: each group clusters together the coefficients associated
to eigen-directions relative to eigenvalues that approximately share
the same magnitude (a set relative to small eigenvalues, a set relative
to larger eigenvalues and the final set of eigenvalues equal to one,
7

i.e., those associated to the eigen-directions where recognition takes
place). We evaluate the three sets of coefficients for each image in the
test set displaying a four and a five and compute the average distance
(square norm) between each set of coefficients, against 𝑘, the iteration
of the RSN. The coefficients stemming from the transient modes single
out the differences between the analyzed samples, before converging to
zero when the stationary eigen-modes, inactive at first, get eventually
approached

In the next Section we will turn to considering a variant of the RSN
which is constructed to yield sequential handling of different datasets,
with a long term memory effect. To demonstrate our findings, and as
a preliminary proof of concept, we will split MNIST into two distinct,
though perfectly balanced, datasets, the first formed by digits from zero
to four, and the other populated with the remaining elements, ranging
from five to nine.

5. Sequential learning: spectral quasi-orthogonality and the mem-
ory effects

In this Section we will discuss a generalization of the RNS which
allows to keep track, to some extent, of a learned task, while dealing
with an independent session of training, on a distinct dataset. To elabo-
rate along these lines, and with the sole aim of providing a preliminary
proof of concept of the basic implementation, we shall split the MNIST
into two distinct, though balanced datasets. The first will be composed
by handwritten digits ranging from zero to four. The remaining images,
displaying numbers from five to nine, constitute the second reservoir.
We will then train the RSN to classify the images belonging to the first
dataset. Then, the obtained RSN undergoes a second round of training
focusing on the images that define the complementary dataset. By
assuming sets of quasi-orthogonal eigenvectors with associated memory
kernels, yields a fully coupled network, the backbone of the RSN, which
is capable to efficiently handle novel tasks while preserving notion of
past knowledge. This is at variance of conventional schemes, based on
standard deep learning architectures or RNN, which tend to eradicate
former imprints by overwriting existing memory slots, as we shall
hereafter demonstrate [14–16].

MNIST images are read as an input by a layer made of 𝑁0 = 28×28.
This information is passed to the 𝑁 nodes of the RSN via an all-to-all
linear transformation encoded by a 𝑁0×𝑁 matrix 𝐀0, see Fig. 10. Here,
𝐀0 is fixed. As such, the entries of 𝐀0 do not take active part to the
optimization process which is instead focused on the RSN component
of the dynamics. Further, 𝑁 (assumed even, with no loss of generality)
can be larger of smaller than 𝑁0 without any limitation whatsoever.
We then postulate the following form for matrix Φ:

Φ =
(

Φ11 𝜖Φ12
𝜖Φ21 Φ22

)

(3)

The four blocks Φ𝑖𝑗 , with 𝑖, 𝑗 = 1, 2 have dimensions 𝑁∕2 × 𝑁∕2,
and comparable norms. The parameter 𝜖 sets the importance of the off-
diagonal blocks as compared to those that define the block diagonal
terms. In the limiting case 𝜖 = 0 the matrix of the eigenvectors is
block diagonal. The eigenvectors are hence organized into two distinct
ensemble, mutually orthogonal and the corresponding network splits
into two disconnected parts. When 𝜖 ≠ 0 instead the two subparts of the
ensuing network get mutually entangled and virtually indistinguishable
for a sufficiently large magnitude of the coupling parameter 𝜖. For
𝜖 ≠ 0, though relatively small as we shall assume in the following,
the eigenvectors form two quasi-orthogonal blocks. Focus now on
the diagonal matrix of the eigenvalues. These are also split into two
groups of identical cardinality, which will be eventually structured as
follows

(

1, 1, 1, 1, 1, 𝜆6,… , 𝜆𝑁∕2
)

and
(

1, 1, 1, 1, 1, 𝜆𝑁∕2+6,… , 𝜆𝑁
)

. Trivial
eigenvalues are associated to specific eigen-directions, the target of the
RSN, which stay put across optimization. In practice, each eigenvalue
equal to unit points to a specific memory slot which can be filled and,
at least partially, preserved, across multiple learning stages. Starting
from this setting we proceed as follows:

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
Fig. 8. Evolution of the accuracy as computed on the test set of the MNIST dataset. Red symbols stand for a RSN model, trained at �̄� = 5 (black dashed line); blue symbols refer
to a RNN, with �̄�+1 consecutive layers, i.e. with �̄� nested applications of the same 𝑁 ×𝑁 transfer operator. The RSN quickly converges to the best accuracy, which stays constant
for 𝑘 > �̄�. At variance, the RNN is capable to correctly discriminating the items provided as input entries only punctually, at �̄� = 5. It loses any predictive power for 𝑘 > �̄�. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Euclidean distance (normalized to its maximum value) between the three sets of coefficients as described in the main body of the paper and respectively referred to fours
and fives, against the iteration index 𝑘. The orange curve refers to (10) coefficients, associated to modes with small magnitude, as obtained after the training. The green curve is
computed by considering the projections along (10) modes with eigenvalues bearing larger absolute values, though smaller than one. The curve depicted in blue refers to the values
of the coefficients of the 10 eigen-directions relative to eigenvalues one, where classification is eventually performed. The peak travels horizontally suggesting that the information
crawls from the transient towards the stationary modes. The fact that the orange curve seems more persistent that the green at larger 𝑘 is just a consequence of the imposed
normalization. The vertical dashed line is set at �̄�. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
• We set at first to zero the first five eigenvalues belonging to
the second group, as identified above. In doing so, we seek at
protecting a specific set of memory slots, which should not be
contaminated during the first round of training

• We then train the RSN to recognize and correctly classify the
first reservoir made of handwritten digits from zero to four, as
outlined above. During this operation, the optimization acts on
𝜆6...𝜆𝑁∕2 and on (the full set or a limited sub-portion of) the
entries of the eigenvectors associated to these latter eigenvalues.
Here, 𝜖 ≠ 0, which in turn implies that by modulating the entries
of the eigenvectors belonging to the first of the two sets, yields an
8

indirect signature on all the inter-nodes weights in direct space.
At the end of the optimization, the RSN is capable to correctly
classifying analogous images belonging to the test set.

• We then turn to the second round of training by providing to the
above RSN (namely, the RSN that has been trained to cope with
the first dataset) the elements belonging to the second reservoir
of images, those depicting digits ranging from five to nine. The
second set of memory slots is turned on, by setting to unit the
eigenvalues initialized to be zero: the corresponding eigenvectors
define the asymptotic solutions that the trained system should
eventually approach. The eigenvalues that identify the target

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
Fig. 10. A schematic layout of the architecture employed to handle sequential learning. The information stemming from the image presented as an input are passed to the RSN,
and therein iteratively elaborated until convergence to the deputed stationary solution (here exemplified as a stylized version of the input number).
Fig. 11. Top panel: accuracy against the epochs number for the RSN. The first 100 epochs refer to the RSN confronted with the task of classifying the images of the dataset made
of digits from zero to four. Then, the second range of epochs, refers to the RSN while learning to classify numbers from five to nine, after having completed the first stage of
training. The accuracy drops but the RSN keeps still memory of the first task, while learning to cope with the second with an almost identical score of reported success. In this
specific example, the elements of the off diagonal blocks Φ12 and Φ21 are kept fixed, during optimization. Lower panel: sequential learning is ineffective with usual RNN (and
standard feedforward deep neural networks, data not shown), since any form of pre-installed knowledge gets washed out during a subsequent, independent, training stage. Here
�̄� = 10, 𝜖 = 0.25 and 𝑁 = 1000.
eigen-directions from the preceding training are instead set to
zero.

After completion of the optimization, one can check the performance of
the RSN, which has been trained across two successive stages, referred
to two distinct datasets. To this end we turn on all possible memory
slots (trained as follows the above, two steps, procedure): in practice
we set to one the eigenvalues relative to the (10) eigen-directions
where information is asymptotically conveyed. In Fig. 11 (top panel),
the performance of the RSN, as measured by the reported accuracy, is
tested against the epochs of the optimization scheme. The optimization
is carried out by assuming �̄� = 10 in the RSN, and assuming 100 of
epochs for each of the two nested stages of learning. Already after a few
9

epochs the RSN returns a very high accuracy against images of the test
set which display digits ranging from zero to four. When the RSN gets
also trained on the complementary reservoir of handwritten digits, as
follows the sequential scheme highlighted above, it quickly manages to
handle the novel task with an adequate success rate, while, at the same
time, manifesting a relatively modest drop in performance as referred
to the former. Notice that the images, differently from other methods,
are supplied as an input with no extra markings, or alert flags, to point
to the relevant group of destination patterns. To grasp the interest of
the proposed scheme we report in Fig. 11 the results obtained for a
RNN with a number of layers equal to �̄�+1. As immediately confirmed
by visual inspection, any knowledge coming from the first round of
training is – almost instantaneously – lost, when the network becomes

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
acquainted with the second task. Similar conclusions (data not shown)
are obtained when dealing with a deep neural network, with a standard
feedforward architecture [14–16]. Summing up, working with a quasi-
orthogonal basis, with a set of (almost) mutually exclusive blocks equal
to the number of tasks to be eventually handled, yields a RSN which can
be sequentially trained, while keeping memory of the previous training
sessions. A drop in the recorded accuracy is however found which could
be possibly mitigated for increasing RSN size and/or addressing ad
hoc solutions that require further investigations, beyond the scope of a
mere proof of concept. It is also remarkable that the accuracy displayed
against the first dataset, and after the initial sudden jump that follows
the second training round, ramps again, epoch after epoch, to align to
that refereed to the second dataset.

6. Conclusions

In this paper we have introduced and tested a novel approach to
automated learning, which is rooted in reciprocal space and exploits
foundational elements of the theory of discrete dynamical systems. The
information under scrutiny is read by a collection of nodes, typically
(but not necessarily) the pixels of the image provided as an entry,
and further processed by the very same nodes, as follows an iterative
update scheme which alternates linear mapping and non-linear filters.
Depending on the characteristics of the signal provided as an input, the
ensuing dynamics is steered (as a byproduct of the training) towards
different asymptotic solutions for the subsequent recognition to take
eventually place. The convergence to the asymptotic state is stable by
construction, and the alignment along the selected direction that we
demonstrate empirically for a classical benchmark model is guaranteed
also when pushing the iterations beyond the limited horizon of the
optimization. We have referred to the proposed methodology as to
Recurrent Spectral Network RSN, to signify the dynamical nature of
the process which is formulated in reciprocal domain.

Neural networks are sometimes called black boxes because it is not
immediate to understand how or why they work as well as they do. At
variance, the operational mode of a RSN is absolutely transparent and,
as such, it could help unveiling the blanked of mystery that surrounds
machine learning applications. Indeed, the RSN asymptotically aligns
along different directions within the attracting manifold of an under-
lying – linear – discrete dynamical system. Learning to classify within
the RSN amounts to partitioning the high dimensional input space into
separated domains, each pointing to a specific stationary eigen-mode
of the underlying dynamical system, in its linear approximation. Non-
linearities act over a transient and fades eventually away, when the non
trivial classification problem has been de facto turned into a linear one.

A variant of the RSN has been also considered which accounts for
quasi-orthogonal eigen-directions to carry out a sequential handling of
different datasets. In practice, a RSN can be assembled which keeps
memory of an initial task, while being subject to another session of
training on an independent dataset.

Several directions for further investigations can be outlined. One
interesting possibility is to modify the loss function by forcing the
contribution at iteration 𝑘 to be smaller than that at iteration 𝑘 +
1. Preliminary checks shows that the RSN tunes self-consistently its
convergence rate, which is hence not a priori imposed as it is here done.
It is also tempting to speculate that proceeding along these lines, one
could eventually generate a RSN which is capable of improving its accu-
racy score by iterating further beyond the specific window of training.
Another possibility is to introduce apposite frustration mechanisms,
which tend to disfavor the accidental convergence towards directions
that have been already exploited, when operating with the sequential
learning protocol. Also, it would be extremely important to devise other
possible strategies, alternative to the one here employed, to structure
10

the eigenvectors matrix for multiple datasets handling.
CRediT authorship contribution statement

Lorenzo Chicchi: Conceived the study and carried out the analyti-
cal work, Carried out the numerical work. Duccio Fanelli: Conceived
the study and carried out the analytical work. Lorenzo Giambagli:
Conceived the study and carried out the analytical work, Carried out
the numerical work. Lorenzo Buffoni: Carried out the numerical work.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Duccio Fanelli reports a relationship with University of Florence that
includes: employment.

Data availability

Data will be made available on request.

Acknowledgment

D.F. acknowledges financial support from the project PE-MNESYS
funded by the Italian Ministry of Research (MUR) under the program
PNRR.

All authors contributed to interpret the results and to write the
manuscript’ to Acknowledgment section.

References

[1] He Y, Lin J, Liu Z, Wang H, Li L-J, Han S. Amc: Automl for model compression
and acceleration on mobile devices. In: Proceedings of the European conference
on computer vision. ECCV, 2018, p. 784–800.

[2] Sutton RS, Barto AG. Reinforcement learning: an introduction. MIT Press; 2018.
[3] Grigorescu S, Trasnea B, Cocias T, Macesanu G. A survey of deep learning

techniques for autonomous driving. J Field Robotics 2020;37(3):362–86.
[4] Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z, Sanger A, Tokcan N,

Vanderburg CR, Segerstolpe Å, Zhang M, et al. Deep learning and alignment
of spatially resolved single-cell transcriptomes with Tangram. Nature Methods
2021;18(11):1352–62.

[5] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016, http:
//www.deeplearningbook.org.

[6] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.
[7] Deng L, Yu D. Deep learning: methods and applications. Found Trends Signal

Process 2014;7(3–4):197–387.
[8] Giambagli L, Buffoni L, Carletti T, Nocentini W, Fanelli D. Machine learning in

spectral domain. Nature Commun 2021;12(1):1–9.
[9] Chicchi L, Giambagli L, Buffoni L, Carletti T, Ciavarella M, Fanelli D. Training of

sparse and dense deep neural networks: Fewer parameters, same performance.
Phys Rev E 2021;104(5):054312.

[10] In principle, the system could eventually align along any direction in the
manifold spanned by the eigenvectors (of the linear operator) relative to unit
eigenvalues. Indeed the learning process, as encoded in the chosen loss function,
forces the system to align (as much as possible) along a specific direction -
a given eigenvectors selected from those that are associated to eigenvalues
identically equal to one. The effectiveness of the procedure is confirmed by
a posteriori inspection, as we shall discuss in the following. The proposed
method proves indeed remarkably successfully beyond the toy model setting
investigated for pedagogical reasons and against classical benchmark datasets.
The approximate alignment along the target direction can be made exact by a
non linear projection filter that singles out the most prominent among residual
directions, in reciprocal space at the time of decision.

[11] Gauthier DJ, Bollt E, Griffith A, Barbosa WA. Next generation reservoir
computing. Nature Commun 2021;12(1):1–8.

[12] Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N, Takeda S, Numata H,
Nakano D, Hirose A. Recent advances in physical reservoir computing: A review.
Neural Netw 2019;115:100–23.

[13] Maass W, Natschläger T, Markram H. Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural Comput
2002;14(11):2531–60.

[14] McCloskey M, Cohen NJ. Catastrophic interference in connectionist networks:
The sequential learning problem. In: Psychology of learning and motivation, Vol.
24. Elsevier; 1989, p. 109–65.

[15] Lewandowsky S, Li S-C. Catastrophic interference in neural networks: Causes,
solutions, and data. In: Interference and inhibition in cognition. Elsevier; 1995,

p. 329–61.

http://refhub.elsevier.com/S0960-0779(23)00029-2/sb1
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb1
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb1
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb1
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb1
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb2
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb3
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb3
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb3
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb4
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb4
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb4
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb4
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb4
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb4
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb4
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb6
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb7
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb7
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb7
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb8
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb8
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb8
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb9
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb9
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb9
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb9
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb9
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb11
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb11
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb11
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb12
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb12
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb12
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb12
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb12
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb13
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb13
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb13
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb13
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb13
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb14
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb14
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb14
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb14
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb14
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb15
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb15
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb15
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb15
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb15

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 168 (2023) 113128L. Chicchi et al.
[16] Kemker R, McClure M, Abitino A, Hayes T, Kanan C. Measuring catastrophic
forgetting in neural networks. In: Proceedings of the AAAI conference on artificial
intelligence, Vol. 32. 2018.

[17] Kirkpatrick J, Pascanu R, Rabinowitz N, Veness, et al. Overcoming catastrophic
forgetting in neural networks. Proc Natl Acad Sci 2017;114(13):3521–6.

[18] Goodfellow IJ, Mirza M, Xiao D, Courville A, Bengio Y. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. 2013, arXiv
preprint arXiv:1312.6211.

[19] Li X, Zhou Y, Wu T, Socher R, Xiong C. Learn to grow: A continual structure
learning framework for overcoming catastrophic forgetting. In: International
conference on machine learning. PMLR; 2019, p. 3925–34.
11
[20] LeCun Y. The MNIST database of handwritten digits. 1998, http://yann.lecun.
com/exdb/mnist/.

[21] Chollet F, et al. Keras. 2015, https://keras.io.
[22] Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long

short-term memory (LSTM) network. Physica D 2020;404:132306.
[23] Goldberg Y. Neural network methods for natural language processing. Synth Lect

Hum Lang Technol 2017;10(1):1–309.
[24] Medsker LR, Jain L. Recurrent neural networks. Des Appl 2001;5:64–7.

http://refhub.elsevier.com/S0960-0779(23)00029-2/sb16
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb16
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb16
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb16
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb16
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb17
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb17
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb17
http://arxiv.org/abs/1312.6211
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb19
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb19
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb19
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb19
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb19
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://keras.io
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb22
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb22
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb22
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb23
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb23
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb23
http://refhub.elsevier.com/S0960-0779(23)00029-2/sb24

	Recurrent Spectral Network (RSN): Shaping a discrete map to reach automated classification
	Introduction
	The mathematical foundation
	Testing RSN: A simple dataset in R 2
	Applying RSN to the MNIST dataset
	Sequential learning: spectral quasi-orthogonality and the memory effects
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

