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Abstract

This paper presents a novel approach to advancing artificial intelligence (AI)
through the development of the Complex Recurrent Spectral Network (C-RSN), an
innovative variant of the Recurrent Spectral Network (RSN) model. The C-RSN
is designed to address a critical limitation in existing neural network models: their
inability to emulate the complex processes of biological neural networks dynamically
and accurately. By integrating key concepts from dynamical systems theory and
leveraging principles from statistical mechanics, the C-RSN model introduces local-
ized non-linearity, complex fixed eigenvalues, and a distinct separation of memory
and input processing functionalities. These features collectively enable the C-RSN
evolving towards a dynamic, oscillating final state that more closely mirrors biologi-
cal cognition. Central to this work is the exploration of how the C-RSN manages to
capture the rhythmic, oscillatory dynamics intrinsic to biological systems, thanks to
its complex eigenvalue structure and the innovative segregation of its linear and non-
linear components. The model’s ability to classify data through a time-dependent
function, and the localization of information processing, is demonstrated with an
empirical evaluation using the MNIST dataset. Remarkably, distinct items supplied
as a sequential input yield patterns in time which bear the indirect imprint of the
insertion order (and of the time of separation between contiguous insertions).

1. Introduction

Today, artificial intelligence (AI) [1] stands as a cornerstone of innovation and
progress. The surge in AI research and its applications across various domains,
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from healthcare [2, 3] and finance [4, 5] to autonomous systems [6, 7] and beyond
[8, 5, 9, 10, 11], underscores its growing importance. At the heart of this burgeoning
field is the quest to not only replicate but also to enhance human cognitive abilities
through computational means [12, 13]. AI’s significance is particularly evident in
its ability to process vast amounts of data [14], uncover patterns [15, 16], and make
decisions [17], often surpassing human capabilities in speed and efficiency [18].

Central to the evolution of AI are neural networks [19], which draw inspiration
from the biological neural networks [20] that constitute animal brains. These net-
works are systems of interconnected nodes, or neurons, that work in concert to solve
complex problems. Among these, Recurrent Neural Networks (RNNs) [21, 22, 23]
have emerged as a pivotal tool, especially in tasks involving sequential data. Unlike
traditional neural networks, RNNs possess a unique feature: memory. This allows
them to process not just individual data points, but entire sequences of data, making
them particularly adept at tasks like language processing [24], time series analysis
[25], and even music composition [26, 27].

Despite the impressive performance displayed by AI, ML, and DL technplogies, a
significant gap remains in our understanding of their inner workings [28]. This opac-
ity often limits their broader application, especially in scenarios demanding trans-
parency and reliability [29, 30]. Indeed, interpretability [31, 32] represents still a
critical challenge in the field.

Physicists have begun to elaborate on these aspects, by employing concepts from
Statistical Mechanics [33, 34, 35, 36, 37, 38, 39] to construct theoretical frameworks
for AI systems [40, 41]. Their approaches typically utilize models of disordered
[42, 43, 44, 45, 46] or complex systems [47, 48, 49, 50, 23], shedding light on the
intricate dynamics of AI algorithms. In this paper we adopt a distinct perspective, by
leveraging the principles of dynamical systems theory [51, 52, 53, 54]. This approach
is particularly suited to unravel the complexities of AI, and thus offering a more
structured and theoretically grounded understanding to their inherent functioning.

The recent introduction of EODECA (Engineered Ordinary Differential Equation
as Classification Algorithms) [55] in the literature marks a significant leap forward
in this endeavor. EODECA establishes a novel connection between machine learning
and dynamical systems, by opening up the perspective for a fresh lens through which
AI algorithms can be examined and understood.

In this paper, our focus is to delve deeper into the intricacies of Recurrent Neural
Networks (RNNs). More specifically, by applying the principles of dynamical sys-
tems theory, we aim to enhance and expand upon the existing work on Recurrent
Spectral Methods (RSN), as introduced in [23]. In this latter paper, a novel machine
learning strategy was proposed wherein the evaluation process is intricately linked

2



to the dynamics of a specifically engineered system. The spectral parametrization of
the adjacency matrix within a fully connected network. allows to effectively steer the
system’s dynamics towards a pre-defined vector subspace, spanned by select eigen-
vectors. During the learning phase, parameters are self-consistently chosen so as to
ensure that the system converges to a final stationary state, which points to the class
the provided input data belongs to. This methodology has revealed several notable
properties. A striking observation is the apparent independence of the evaluation
process from the number of steps, or the system’s integration time, as employed
during training. This results in a robust convergence of accuracy (or measured loss)
to a stable asymptotic value, which remains consistent across successive iterations,
transcending the constraints of the training’s temporal horizon. This characteristic
markedly contrasts with traditional Recurrent Neural Networks (RNNs), where the
iteration count is a critical parameter for accurately categorizing test data.

However, despite these advancements, the RSN model exhibits a significant lim-
itation: it predicts a static final state. This stands in stark contrast to the dynamic
nature of real biological systems, where neurons exhibit continuous, time-evolving
activity.

To address this critical shortcoming, this manuscript introduces an innovative
variant of the RSN model: the Complex Recurrent Spectral Network (C-RSN). The
C-RSN model endeavors to move beyond the static final state paradigm of the stan-
dard RSN model. Through this enhancement, C-RSN aims to offer a more accurate
and biologically-relevant representation of neural processes, potentially unlocking
new horizons in the application of machine learning to complex, time-sensitive tasks.

Building on the foundation of the RSN model, the Complex Recurrent Spectral
Network (C-RSN) introduces several key innovations that significantly enhance its
capability to model dynamic systems, drawing it closer to the complexity of biological
neural networks. These new elements are intricately woven into the fabric of the C-
RSN model, each serving a distinct and critical role in the overall functionality:

• Localized Non-linearity in a Subset of Nodes: In the C-RSN model,
non-linearity is not uniformly distributed across the entire network. Instead,
it is strategically localized within a specific subset of nodes, referred to as the
non-linear part. This targeted application of non-linearity allows for a more
nuanced and controlled interaction within the network.

• Complex Fixed Eigenvalues: A fundamental aspect of the C-RSN is the
incorporation of complex fixed eigenvalues of the form e2πi/Tm . This complex
eigenvalue structure imbues the network with a rhythmic, oscillatory dynamic
that is reminiscent of the cyclical processes observed in biological neural ac-
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tivities [56, 57]. This feature allows the network to model time-dependent
phenomena more effectively, providing a richer, more versatile framework for
understanding temporal patterns [58].

• Memory Confined in the Linear Part:In the C-RSN architecture, memory
functionality is confined to the linear part of the network. This segregation of
memory into a dedicated linear subsystem ensures a more stable and reliable
retention of information. The system is also able to handle sequential inputs
by keeping track of the relative insertion order.

• Input Processing in the Non-Linear Part: The design of the C-RSN
ensures that the input is primarily processed in the non-linear part of the
network. This approach allows for a more dynamic and adaptive response to
incoming data, as the non-linear elements of the network provide a rich, flexible
mechanism for data interpretation and response.

These innovative features collectively empower the C-RSN model to transcend
the limitations of the static RSN framework, offering a more dynamic, adaptive,
and biologically-relevant system. The integration of localized nonlinearity, complex
eigenvalues, dedicated memory storage, and specialized input processing marks a
significant step forward in the development of neural network models that more
accurately reflect the intricate and dynamic nature of biological neural processes.

The introduction of these novel components into the C-RSN model heralds a
paradigm shift in the way the system approaches its final state. As we delve deeper
in the subsequent sections, it becomes evident that the system no longer converges
to a static state. Instead, it evolves towards a dynamic, oscillating final state. This
behavior is a direct consequence of the innovative elements integrated into the C-RSN
model.

The oscillatory nature of the final state is intricately linked to the complex and
fixed eigenvalues, specifically those of the form e2πi/Tm . These eigenvalues play a
crucial role in defining the temporal dynamics of the system. The final state emerges
as a linear superposition of eigenvectors associated with these eigenvalues, leading to
a periodic behavior where the period is contingent upon the values of the constants
Tm. This introduces a new dimension of temporal dynamics to the model, allowing it
to simulate the rhythmic and oscillatory processes characteristic of biological systems.

Furthermore, the emergent wavefront’s shape in this final state reflects the specific
combination of eigenvectors that remain active in the asymptotic state. In essence,
the complex eigenvalues form a foundational basis of frequencies or periods, providing
a framework upon which the state can be articulated at large timescales. This
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ability to represent the system’s state as a function of time through a combination of
frequencies is a significant advancement, offering a novel approach to understanding
and modeling dynamic processes.

In practical terms, this allows the C-RSN to address classification problems in
a unique manner. By initiating the network with an activity corresponding to a
specific dataset, the network is tasked with generating a time-dependent function
fC(t), which is defined by the activity within a sub-portion of the network. This
function effectively becomes a temporal signature of the classified data. C-RSN
possesses the capability to sequentially process multiple sets of input data while
ensuring that the dynamics associated with subsequent inputs remain unaffected by
the preceding ones.

A pivotal distinction from the RSN model is the localization of information stor-
age. In the C-RSN, the information acquired during the evaluation process is concen-
trated within a minimal portion of the network, specifically within a single neuron.
This concentration of information processing and storage into a small network seg-
ment allows the rest of the network to remain unencumbered, ready to engage in
other evaluation processes. This approach not only enhances the efficiency of the
network but also mirrors the specialization and division of labor observed in biologi-
cal neural networks. The C-RSN model, thus, stands as a more refined and realistic
emulation of the dynamic, complex nature of biological cognition and processing [59].

The paper is structured as follows: In Sec. 2, we elaborate on the architecture
of the Neural Network and delve into the intricacies of the learning process. Sec. 3
is dedicated to describing the forward evolution of the map underlying the C-RSN.
Our numerical results, specifically pertaining to the MNIST dataset, are presented
in Sec. 4. The manuscript concludes with Sec. 5, where we summarize our results
and discuss potential avenues for future research.

2. C-RSN Neural Network architecture

In this section, we conceptualize a neural network as a discrete map, thereby
establishing the mathematical underpinnings of the C-RSN. We represent the neural
activity by a vector x⃗ ∈ RN . Simultaneously, the network’s structure is modeled by
a weighted adjacency matrix, W ∈ CN×N , characterizing a fully connected neural
network of order N . It is pertinent to recall from graph theory that the order of a
graph refers to its number of nodes, while the size denotes the number of edges.

The architecture includes two neuron types: linear and non-linear. With linear
we mean that on such neurons an activation function acts linearly, while with non-
linear we mean that on such neurons an activation function acts non-linearly. To this
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end, we categorize the neuron sets as NL = {1, 2, . . . , L − 1, L} (with cardinality
|NL| = L) and L = {L,L + 1, . . . , N − 1, N} (with cardinality |L| = N − L),
corresponding to the non-linear and linear segments of the network, respectively.

The neural network, in its entirety, is characterized by a singular activation func-
tion f̃ , which assumes a non-linear form for 1 ≤ i ≤ L and transitions to a linear
form for indices beyond L. For the non-linearity within f̃ , we opt for a sigmoidal
structure, specifically a tanh function. This design choice is elucidated through the
following mathematical expression:

f̃(zl) =

{
tanh (zl) if l ≤ L,

zl if l > L,
(1)

where z⃗ ∈ RN is a generic vector. This formulation captures the nuanced interplay
between linear and non-linear dynamics within the neural network.

In our model, we postulate that the matrix W, belonging to the complex space
CN×N , is derived through its spectral decomposition:

W = ΦΛΦ−1 (2)

Here, Λ is a diagonal matrix composed of eigenvalues λl, and Φ encompasses the
corresponding eigenvectors. Essentially, Φ represents the basis for this decomposi-
tion. The choice of dealing with the above decomposition of the coupling matrix
follows the spectral approach to machine learning discussed in [47, 49, 50, 23]. Our
model’s uniqueness is further accentuated in the organization of the eigenvalues λl:

λl =

{
e2πi/Tl if l < M,

λl ∈ IR where |λl| < 1 if l > M.
(3)

This formulation entails that the first M , with M ≤ L, eigenvalues are prede-
termined to be complex values. Their magnitudes are set to equal 1, with a phase
contingent on the parameter Tl, termed the period. This specification imbues the
model with a rhythmic, cyclical dynamism, reflecting in the oscillatory behavior of
these eigenvalues. Conversely, the second set of eigenvalues (to be trained upon op-
timization) is constrained to have magnitudes less than 1, ensuring a damping effect
that stabilizes the network over time. It is important to note that, despite the use
of complex phases, this approach is completely different from the Complex-Valued
Neural Networks in [60], as our system involves a dynamical evolution instead of
static network.

To provide a more intuitive grasp of this concept, Fig. 1 in our paper offers a
succinct visual depiction of the spectral decomposition as applied in our study. This
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diagrammatic representation aids in comprehending how the eigenvalues are spatially
and numerically orchestrated within the matrix, highlighting the dichotomy nature
of their arrangement and the distinct roles they play in the network’s functionality.

Figure 1: Spectral decomposition used to describe the linear transformation. The trainable param-
eters are highlighted in blue and contained in the set ψt. The fixed parameters are highlighted in
green and contained in the set ψr. The third matrix is the inverse matrix of the basis Φ and depend
to both trainable elements and fixed elements of the matrix Φ.

To clarify, the columns of the matrix Φ correspond to the eigenvectors ψ⃗(k) of the
decomposition, where k ranges from 1 to N . Specifically, the first M eigenvectors,
denoted as m = 1, . . . ,M , are fixed and primarily localized within the linear part of
the network. In Fig. 1, this particular subset of M eigenvectors is identified by the
label ψr. The remaining N −M eigenvectors, encapsulated collectively under the
set ψt, are distinct from the first M and have different characteristics or localization
within the network.

Specifically, when m < M , each component of an eigenvector ψ⃗(m) is set to zero,
with the exception of the N -th and the (N − m)-th components, which are set to

one. In other words, for a given eigenvector ψ⃗(m), only two components are set to
one: the last component and the (N −m)-th component, while the others are set to
zero. For example, for the first three values of m, with N and M fixed, one should
have:
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ψ⃗(m=1) =



0
...
0
0
0
1
1


ψ⃗(m=2) =



0
...
0
0
1
0
1


ψ⃗(m=3) =



0
...
0
1
0
0
1


. (4)

These eigenvectors, i.e the ones in ψr, and the respective eigenvalues, are fixed
and, therefore, not learnable parameters during the training process. The ones in
ψt, with the respective eigenvalues of the form:

λl = tanh(ρl) l =M + 1, . . . , N, ρl ∈ R. (5)

are, instead, parameters that can be learned during the training process. The func-
tional choice of the trainable eigenvectors derives from the observation that eigenval-
ues magnitude must be satisfied during every single step of the training procedure.
In conclusion, the Complex Recurrent Spectral Network (C-RSN) is defined as the
discrete map:

x⃗t+1 = f̃(ΦΛΦ−1x⃗t). (6)

The above system will be trained by employing a suitably defined loss that pivots
on the real part of the time dependent signal produced at the exit node. We will
elaborate further on this point in the following section.

3. Forward evolution of the map

Here, we focus on the forward evolution of the map within our model, i.e, equation
(6). Let’s begin by defining x⃗0 as the initial condition for our map. After t iterations
of the discrete map, we obtain a vector x⃗t.

For the purposes of this analysis, we will solely focus on the linear dynamics, by
deliberately neglecting the contributions that stem from the imposed (and spatially
localized) non-linearities. This assumption simplifies our understanding of the sys-
tem’s behavior, without losing in generality. Under linear dynamics and given the
specific constraints on the eigenvalues described in the previous section, we observe
that the long-term behavior of the system, i.e., its asymptotic dynamics, is confined
to a subspace. This subspace is defined by the first M eigenvectors of the system.
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In principle, non-linearities could hold the potential to disrupt the system’s con-
vergence towards its expected asymptotic manifold — the subspace spanned by the
eigenvectors linked to the fixed (and complex) eigenvalues. Interestingly, our inves-
tigations reveal that such deviations from the expected behavior — which we might
term divergent behaviours somewhat loosely — are rare even for a system that did
not undergo training and that has been initialized at random. Therefore, in our fur-
ther discussions, we will can safely assume that the dynamics of our system steadily
progress, upon training, towards the final subspace defined by the fixed eigenvectors.

Let us consider a scenario where, after t∗ iterations, the dynamics of the map
(6) become confined within the subspace formed by the first M eigenvectors. This
situation can be mathematically expressed as follows:

x⃗t∗ =
M∑

m=1

αmψ⃗
(m). (7)

Here, x⃗t∗ represents the state of the system after t∗ iterations. The expression on
the right-hand side is a linear combination of the first M eigenvectors ψ⃗(m), where
each eigenvector is scaled by a coefficient αm. This representation encapsulates the
essence of our system’s dynamics being dominated by these specific eigenvectors as
time progresses. In other words, we are expressing x⃗t∗ into a basis composed by first
M eigenvectors.

This formulation aligns with our earlier discussion that the system, influenced by
its inherent constraints and the learning process, naturally gravitates towards this
particular subspace. The coefficients αm in the equation are indicative of the extent
to which each of the first M eigenvectors influences the state of the system at the
iteration t∗.

From (4) and (1), the dynamics on the subspace is linear and the activity remains
confined on it. In particular after a new application of the map (6), the activity
becomes:

x⃗t∗+1 =
M∑

m=1

αme
2πi/Tmψ⃗(m). (8)

Making more iterations, the above equation transforms into:

x⃗t∗+t =
M∑

m=1

αm(e
2πi/Tm)tψ⃗(m) =

M∑
m=1

αme
2πit/Tmψ⃗(m). (9)

Next, we turn our focus to the coefficients αm in the system’s dynamics. These
coefficients are typically complex numbers, a result of the complex eigenvalues. More-
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over, they are functions of the training parameters, which means their values are
influenced by these parameters.

Depending on how a specific trainable parameter is set, the system can exhibit
a variety of evolutionary patterns. These patterns, in turn, influence the coefficients
αm, which represent the activity in the context of the chosen reference basis. Essen-
tially, the evolution of the system under different training parameters leaves its trace
in these coefficients.

To clearly illustrate this relationship, we express the coefficients αm as functions
that depend on a vector of trainable parameters, denoted as β⃗. This approach helps
to highlight how changes in the training parameters directly impact the coefficients,
thereby affecting the system’s overall behavior. The coefficients αm can, therefore,
be expressed as follows:

αm(β⃗) = r(m, x⃗0, β⃗) + ic(m, x⃗0, β⃗), (10)

where r(m, x⃗0, β⃗) and c(m, x⃗0, β⃗) are two real scalar functions where the depen-
dence on the initial condition x⃗0 has been made explicit. Under this setting, the
equation (9) becomes:

x⃗t∗+t =
M∑

m=1

αm(β⃗)e
2πit/Tmψ⃗(m) =

M∑
m=1

(r(m, x⃗0, β⃗) + ic(m, x⃗0, β⃗)e
2πit/Tmψ⃗(m) =

=
M∑

m=1

(
r(m, x⃗0, β⃗) + ic(m, x⃗0, β⃗)

)(
cos

(
2πt

Tm

)
+ i sin

(
2πt

Tm

))
ψ⃗(m).

(11)

From the form of eigenvalues in (4), and recalling that (ψ⃗(m))N = 1 ∀m = 1, ...,M ,
we can explicitly compute the N -th component of x⃗t∗+t:

(
x⃗t∗+t

)
N
=

M∑
m=1

(
r(m, x⃗0, β⃗) cos

(
2πt

Tm

)
− c(m, x⃗0, β⃗) sin

(
2πt

Tm

))
+

+ i

(
c(m,x0, β⃗) cos

(
2πt

Tm

)
+ r(m, x⃗0, β⃗) sin

(
2πt

Tm

))
,

(12)

and taking the real part of the above equation, we end up with:

R(t, x⃗0, β⃗) = Re ((x⃗t∗+t)N) =
M∑

m=1

(
r(m, x⃗0, β⃗) cos

(
2πt

Tm

)
− c(m, x⃗0, β⃗) sin

(
2πt

Tm

))
.

(13)
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This latter equation, represented by (13), plays a pivotal role in defining the loss

function for our model. The focus on the real part, R(t, x⃗0, β⃗), is not arbitrary but is
rooted in the intrinsic characteristics of the system and the objectives of our training
process.

In the context of our neural network model, the real part of the complex state
vector, x⃗t∗+t, encapsulates critical information about the system’s dynamics. By inte-
grating the real part into the loss function, we align the training process with the goal
of optimizing the network’s performance based on tangible, observable outcomes. As
we will detail in the following sections, the formulation of the loss function leverag-
ing R(t, x⃗0, β⃗) is instrumental in guiding the network towards desirable dynamics,
reflecting our model’s underlying principles and objectives.

Expanding upon this foundation, we apply our model to classification tasks. Our
dataset D consists of pairs (x⃗0, ŷ)

η for η = 1, . . . , |D|. Here, x⃗0 serves as both the
input vector and the initial condition for our discrete map, while ŷ represents the
label, ranging from 1 to C, corresponding to different classes.

For classification purposes, we define C discrete time functions, fC(t), each asso-
ciated with a distinct class. The classification challenge involves training the network
to minimize a loss function, formulated as:

L =
∑
η∈D

L(x⃗ η
0 , β⃗) (14)

where

L(x⃗ η
0 , β⃗) =

T∑
t=0

(R(t, x⃗ η
0 , β⃗)− fŷη(t))

2. (15)

This loss function hinges on the real part of the network’s output, R(t, x⃗0, β⃗), at

time t, with the aim of minimizing it through the adjustment of β⃗. The network
is thus trained to align the real part of its output with the target time function for
each class, over a time span T , starting from the input x⃗0.

In the following subsections, we will delve into the results obtained from applying
this model to the renowned MNIST dataset [61]. The MNIST dataset serves as
an excellent platform to demonstrate our model’s capability in classifying different
classes, based on their temporal dynamics.

4. Results

The MNIST dataset, an acronym for Modified National Institute of Standards
and Technology, is a renowned collection of handwritten digits. It comprises 60000
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training images and 10000 testing images, each of size 28×28 pixels, making it a fun-
damental resource for training and testing in machine learning and image recognition
domains. Over the years, it has emerged as a primary benchmark and has become
the de facto standard for research in image classification. The dataset is organized
into ten classes, each corresponding to the digits 0 through 9. Every image in the
dataset is associated with a label that indicates the class of the image, i.e., the digit
it represents.

In our study, we trained a C-RSN (Complex Recurrent Spectral Network) of size
N = 1000. The non-linearity, as defined in (1), is applied to the first L = 800 neurons.
We set the number of fixed eigenvectors and eigenvalues at M = 5. The model was
trained to replicate the corresponding target discrete time function within a T = 20
step time window, during which the loss is computed. Prior to this window, the
network is allowed to evolve for t′ = 10 time steps, starting from an initial condition
shaped by the selected image.

Each image from the MNIST dataset is normalized to ensure the pixel values
range between 0 and 1. This normalized data is then input to a selected subset of
nodes in the network, particularly those incorporating non-linear processing units.
During the initial ten steps, the network executes the classification task by diverging
the dynamics that result from initial conditions belonging to different classes into
their respective final states.

Continuing this analysis, Figure 2 showcases the network’s performance. The
discrete time function f(t) output by the last neuron is depicted in blue, while the
red line represents the target discrete time function for the input class. Remarkably,
the two curves closely align, indicating that the model has successfully learned to
reproduce the target function. Notably, this alignment persists even beyond the time
window where the loss is calculated, as highlighted in yellow in the figure. Further-
more, the convergence of the curves begins even before this designated time window.
These observations are consistent with findings from the RSN model presented in
[23], particularly the sustained proximity of the curves across successive time steps,
which is a direct consequence of the stability of the final subspace.

To quantify the model’s effectiveness, we assess its accuracy by determining, for
each input, which of the potential target functions (based on L2 distance) is closest
to the function observed in the last neuron. Applying this method to the MNIST
dataset, our model achieved an impressive accuracy of 0.9784 on the test set. This
level of accuracy is quite remarkable, especially considering that a Multi-Layer Per-
ceptron (MLP) with a ReLu activation function, a well-established approach in the
field, achieves an accuracy of around 0.9820. The close proximity of our model’s ac-
curacy to that of the MLP underscores its efficacy. It demonstrates that our model
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not only achieves high accuracy but also is comparable to, and nearly matches, the
performance of a conventional MLP in this context. Such results highlight the poten-
tial of our model as a robust alternative for image classification tasks, especially in
scenarios where the nuanced dynamics captured by our model could offer additional
benefits.

Figure 2: Comparison of the predicted activity in the last neuron (blue line) against the target
temporal function (red line) for an input corresponding to the class 1. The shaded yellow region
indicates the time window where the loss is computed.

4.1. The Role of the Basis in Signal Reconstruction

Equation (13) elucidates that the signal observed in the last neuron is a linear
combination of sinusoids, each defined by a distinct period Tm. It is important to
note that each of the fixed eigenvectors in our model is sparse, with only two non-
zero elements—one consistently at position N , and the other at a unique position
corresponding to the eigenvector in question. The signal at these non-zero positions
is, by design, a pure sinusoidal function, the period of which mirrors the Tm value
specified in the definition of its associated eigenvalue. Consequently, the amplitude
of these sinusoidal waves provides an indirect metric for assessing the prominence of
each mode within the time-resolved patterns observed at node N .

The parameters Tm, introduced in (3), effectively filter elements from the Fourier
basis, crafting a bespoke basis that the network employs to construct the signal in
the last neuron. This process is displayed in Figure (3), which presents a visual
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representation of the network during two distinct dynamic phases: the onset of
the activity and a subsequent moment within the finite window where the loss is
computed.

Panel A of Figure (3) captures the network at the initial condition, showcasing
activity initiation within the non-linear segment. As the dynamics progress, this
activity transitions towards the linear portion of the network. By the time we observe
Panel B, the network has iterated sufficiently for the activity to be fully contained
within the linear section. Here, the real part of the activity in the last neuron is seen
to closely resemble the target time function. Meanwhile, the neurons associated with
the fixed eigenvectors display the anticipated sinusoidal behavior.

This visualization not only confirms the theoretical underpinnings of our model
but also provides concrete evidence of the network’s capability to adapt and channel
the activity through its architecture, culminating in the accurate reproduction of the
desired signal.
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Figure 3: Visual representation of the C-RSNnetwork at two distinct points in its dynamic evolu-
tion. For clarity, this schematic only illustrates a subset of the network’s nodes: individual nodes
represent groups, except for the last node and those corresponding to the five fixed eigenvectors. The
activity of the last neuron is traced by a blue line in the lower sub-panel, and the target temporal
function is overlaid in red within the same sub-panel. The non-zero entries of the eigenvectors that
constitute the attracting manifold are depicted as a linear horizontal array positioned just above
the last neuron’s activity display in the illustration. The two smaller sub-panels, to the right and
left, highlight the activity in two of these nodes, specifically those characterized by periods T1 = ∞
and T5 = 5. Panel A captures the initial condition where the input data stimulates activity in the
non-linear portion of the network, leaving the linear segment dormant. Panel B, however, presents
a snapshot taken during the loss computation window, where activity has transitioned entirely to
the linear part of the network. At this juncture, the signal in the last neuron aligns with the target
function. The selected neurons display sinusoidal activities, the amplitudes of which correspond to
the coefficients of the target function when decomposed into the Fourier basis.
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4.2. Multiple evaluations

C-RSN networks possess the capability to sequentially process multiple sets of
input data while ensuring that the dynamics associated with subsequent inputs re-
main unaffected by the preceding ones. This independent processing is achievable,
provided that each new data input is introduced after a duration sufficient to allow
the system’s dynamics from the initial data to converge into the stable subspace. We
elucidate in this subsection that, under this precondition, the individual dynamics
of each dataset evolve in isolation.

To demonstrate the capability of C-RSN networks to handle successive inputs, we
decompose the activity vector x⃗t into two distinct components: one that corresponds
to the elements within the linear segment of the network, and another that pertains
to the non-linear segment. This decomposition is represented mathematically as
follows:

x⃗t = x⃗ non−linear
t + x⃗ linear

t . (16)

In this decomposition, the first L components of x⃗ non−linear
t are non-zero, whereas the

remaining N−L components are zero. Conversely, for x⃗ linear
t , the first L components

are zero, and the subsequent N−L components are non-zero. This separation allows
to write down the action of the activation function f̃ as f̃(x⃗ non−linear

t + x⃗ linear
t ) =

x⃗ linear
t +tanh(x⃗ non−linear

t ). This action demonstrates the nuanced interplay between
the linear and non-linear components of the network: while the linear section remains
unaffected, the non-linear segment is transformed by the hyperbolic tangent function,
which introduces the non-linearity essential for the network’s complex behavior.

Let’s now consider a time t much greater than t̄, where t̄ represents the final time
step at which the loss is evaluated. At such a time, the activity vector x⃗t, originating
from the initial condition x⃗0, will have converged to the subspace spanned by the
fixed eigenvectors. Mathematically, this is expressed as x⃗t =

∑M
m=1 αmψ⃗

(m), and it
can be understood that x⃗t is equivalent to x⃗ linear

t , signifying that it resides solely
within the linear sector of the network. Moreover, eq. (8) tells us that also x⃗t+1 is
confined in the same subspace and in particular:

x⃗t+1 = ΦΛΦ−1x⃗t = x⃗ linear
t+1 . (17)

Let’s consider the introduction of an additional activity vector, x⃗′t, which is
superimposed onto the existing vector x⃗t. The resultant neuronal activity within the
network is thus captured by the composite vector s⃗t, which is the sum of x⃗t and x⃗′t,
i.e, s⃗t = x⃗t + x⃗′t. Performing now a new iteration on s⃗t one obtains:
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s⃗t+1 = f̃(ΦΛΦ−1(x⃗t + x⃗′t)) =

= f̃(ΦΛΦ−1x⃗t + ΦΛΦ−1x⃗′t) =

= x⃗ linear
t+1 + f̃(ΦΛΦ−1x⃗′t) =

= x⃗t+1 + x⃗′t+1.

(18)

So, the evolution of the vectors x⃗t and x⃗′t occurs independently. This indepen-
dence stems from the observation that the processing of input data results in a
network state which develops within a subspace. Notably, this subspace comprises
only those neurons that are part of the network’s linear segment.

The above property, therefore, allows us to evaluate and classify different inputs
sequentially by working with a trained C-RSN on a specific dataset. Indeed, after
the network has completed processing a first input and reached a stable state, it can
then receive and independently classify a second input. The overall final state of
the network is captured in the real part of the last neuron’s activity over time. The
time-dependent activity will be a linear superposition of the functions representing
the classes of the two inputs, with a phase shift determined by the time interval
between the introduction of these inputs. Mathematically, if t1 and t2 represent the
times when the inputs are introduced, the real part of the activity in the last neuron
can be described as:

R(t) = fC1(t) + fC2(t+ γ) for t >> t1, t2, (19)

where fC1 and fC2 are the target functions corresponding to the classes of the
inputs, and γ = t2 − t1 (t2 > t1) is the time difference between the two inputs, i.e.,
x⃗η=1
0 and x⃗η=2

0 . For the sake of simplicity, we have omitted from R(t) the dependence

on the initial state and the vector β⃗, which represents the training parameters.
An example of sequential evaluation using the MNIST dataset is depicted in

Figure (4), which presents four distinct phases of the network’s evolution. Panel A,
at t = 0, shows the initial input being introduced into the non-linear part of the
network. As per the dynamics outlined in section (3), the network’s activity evolves
and, after a few steps (specifically at t = 39), it converges within the linear segment.
This convergence is evident in Panel B, where the last neuron displays a temporal
activity pattern resembling the target function.

At t = 100, illustrated in Panel C, a new input is fed into the network. This
triggers the network dynamics to consolidate within the linear part once again, and
the activity in the last neuron begins to reflect the linear superposition of the two
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target functions, in accordance with equation (19). Finally, panel D captures a
later stage where the combined dynamics – influenced by both the residual activity
from the first input and the new input – settle within the linear part. Notably, the
wave pattern at the last neuron, the entry point of the eigenvectors, is shaped by
a linear combination of the two target functions. This pattern intriguingly retains
information about the time interval between the successive introductions of the two
images.

Employing a C-RSN model trained for individual classification, we can effectively
process multiple inputs in sequence. The network’s output enables the identification
of both input classes and the time gap between their introductions. This ability,
demonstrated by the time function in the last neuron, is a natural feature of the
C-RSN model and doesn’t require any additional modifications during training.
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Figure 4: Four key stages in the evolution of a C-RSN network trained on the MNIST dataset.
Panel A captures the initial moment of the first data input. Panel B depicts a later stage where
the network’s dynamics have stabilized, with the sub-panel illustrating the alignment of the real
part of the last neuron’s activity (blue line) with the target function (red line). Panel C shows the
introduction of a second input into the network, without removing the residual activity from the
first input. Finally, Panel D demonstrates how the combined dynamics – from both the residual and
the new input – converge back towards the linear part of the network. Notably, the wave pattern at
the last neuron, corresponding to the eigenvector entries, is a linear combination of the two target
functions. Intriguingly, this pattern also preserves information about the time gap between the
introductions of the two inputs.
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5. Conclusion

Artificial neural network models have historically drawn inspiration from biolog-
ical insights into human brain functioning. However, these models markedly diverge
from contemporary neuroscience models and experimental findings. One notable
distinction is that brain activity is dynamically evolving, whereas traditional neural
networks often lack this dynamic aspect.

In this manuscript we have introduced an advanced version of the RSN, termed
the Complex Recurrent Network (C-RSN), as an extension of the model presented in
[23]. The C-RSN model confines non-linearity to specific nodes, rather than allowing
it to diminish over time. This design ensures that the model’s characteristics remain
consistent, avoiding the temporal convergence towards linearity seen in the RSN.

Like the RSN, the C-RSN utilizes a spectral decomposition to define neuron inter-
actions, with a subset of eigenvectors and eigenvalues as trainable parameters. These
eigenvalues are constrained to have magnitudes less than one, while the remaining
eigenvectors and eigenvalues are fixed and unaltered during training. Notably, the
fixed eigenvalues are complex values with a modulus of one, each correlating to a
specific frequency. This structure ensures that once network dynamics enter the
subspace defined by these eigenvectors, they remain confined there. Moreover, these
eigenvectors converge at the last neuron, allowing for the construction of a signal as
a weighted sum of sinusoidal functions corresponding to the frequencies of the fixed
eigenvalues.

In this context, we formulated a classification problem where the network learns
to reproduce distinct temporal activities for different input classes on the last neu-
ron. Tested with the MNIST dataset, the C-RSN model demonstrated exceptional
accuracy. Its classification capability remains consistent over time as the system sta-
bilizes. Once trained, the model can sequentially classify multiple inputs. The final
activity observed in the last neuron not only reveals the classes of the various inputs
but also the temporal intervals between their introductions, showcasing the model’s
advanced capacity for handling complex classification tasks.

The introduction of the C-RSN model opens up a plethora of research avenues,
particularly in fields where dynamic and complex neural network behaviors are essen-
tial. One immediate area of exploration could be in the realm of time-series analysis,
where the model’s ability to handle sequential inputs and maintain dynamic states
could offer novel insights. This could be particularly beneficial in financial forecast-
ing, weather prediction, or even in analyzing biological sequences.

Another promising area is in the field of neuroscience, where the C-RSN model’s
bio-inspired design could help in understanding brain-like neural processing. Re-
searchers could explore how this model simulates certain cognitive functions or neu-
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ral responses, potentially offering a new perspective on neural computation in the
brain.

These possibilities, along with others yet to be discovered, will be the subject
of detailed investigation in forthcoming manuscripts. These future studies will aim
to not only explore the full potential of the C-RSN model but also to address the
challenges and opportunities it presents in advancing the field of artificial neural
networks.
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